BRCA1 and BRCA2 are nuclear polypeptides to suppress familial breast and ovarian cancers. Accumulated evidence suggests that both BRCA1 and BRCA2 participate in DNA damage response and maintain genomic stability. Mutations of BRCA1 and BRCA2 abrogate DNA damage repair and cause genomic instability under genotoxic stress, which eventually induces tumorigenesis. However, the molecular mechanism by which BRCA1 and BRCA2 participate in DNA damage response remain elusive, which impairs the irradiation of familial breast and ovarian cancers. Recently, we and others identified that PALB2 is an important adaptor that links BRCA1 and BRCA2 in a linear DNA damage repair pathway. Moreover, like BRCA1 and BRCA2, germline mutations of PALB2 are associated with familial breast and ovarian cancers, suggesting that PALB2 is a bona fide tumor suppressor. To elucidate the function of this BRCA pathway in DNA damage response and tumor suppression, our research focuses on the molecular mechanism of PALB2. Using unbiased protein affinity purification approach, we identified several PALB2 partners. Our preliminary study indicates that PALB2 is a double-strand DNA binding protein and plays an important role in DNA damage-induced histone acetylation and chromatin remodeling. In this project, we plan to: 1) dissect the molecular mechanism of PALB2 in DNA damage-induced chromatin remodeling;2) examine the functional defects of cancer-associated PALB2 mutations;3) explore novel therapeutic strategies to prevent PALB2 deficiency-induced tumorigenesis. These studies will not only reveal the molecular mechanism of BRCA pathway in DNA damage response, but also translate our knowledge from basic science research into tumor prevention.

Public Health Relevance

Mutations of BRCA1 and BRCA2 associate with familial breast and ovarian cancers. Accumulated evidence suggests that both BRCA1 and BRCA2 participate in DNA damage response. However, the molecular mechanism of BRCA1 and BRCA2 in DNA damage response remains elusive. Recently, we and others found that PALB2 is an important adaptor that links BRCA1 and BRCA2 in DNA damage repair. In this proposal, we plan to dissect the molecular mechanism of PALB2 in DNA damage repair. This study is likely to reveal the novel function of the BRCA pathway in DNA damage response. The results may also lead to design novel strategies for tumor prevention.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
2R01CA132755-06A1
Application #
8628417
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Pelroy, Richard
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Wei, Huiting; Yu, Xiaochun (2016) Functions of PARylation in DNA Damage Repair Pathways. Genomics Proteomics Bioinformatics 14:131-9
Liu, Yidan; Zhang, Bin; Kuang, Henry et al. (2016) Zinc Finger Protein 618 Regulates the Function of UHRF2 (Ubiquitin-like with PHD and Ring Finger Domains 2) as a Specific 5-Hydroxymethylcytosine Reader. J Biol Chem 291:13679-88
Evans, Joseph R; Zhao, Shuang G; Chang, S Laura et al. (2016) Patient-Level DNA Damage and Repair Pathway Profiles and Prognosis After Prostatectomy for High-Risk Prostate Cancer. JAMA Oncol 2:471-80
Lu, Lin-Yu; Yu, Xiaochun (2015) Double-strand break repair on sex chromosomes: challenges during male meiotic prophase. Cell Cycle 14:516-25
Zhang, Feng; Shi, Jiazhong; Chen, Shih-Hsun et al. (2015) The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response. Nucleic Acids Res 43:10782-94
Jiang, Wenxia; Crowe, Jennifer L; Liu, Xiangyu et al. (2015) Differential phosphorylation of DNA-PKcs regulates the interplay between end-processing and end-ligation during nonhomologous end-joining. Mol Cell 58:172-85
Li, M; Yu, X (2015) The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy. Oncogene 34:3349-56
Bian, Chunjing; Chen, Qiang; Yu, Xiaochun (2015) Correction: The zinc finger proteins ZNF644 and WIZ regulate the G9a/GLP complex for gene repression. Elife 4:
Ouyang, Siwei; Song, Yanfeng; Tian, Yingxia et al. (2015) RNF8 deficiency results in neurodegeneration in mice. Neurobiol Aging 36:2850-60
Yang, Huibin; Palmbos, Phillip L; Wang, Lidong et al. (2015) ATDC (Ataxia Telangiectasia Group D Complementing) Promotes Radioresistance through an Interaction with the RNF8 Ubiquitin Ligase. J Biol Chem 290:27146-57

Showing the most recent 10 out of 42 publications