The overall goals of this proposal are to: 1) Measure the prognostic impact of histologic grade (without and with computer assistance) of follicular lymphoma cases by comparing it with outcome measures;and 2) to develop a computer-assisted image analysis (CaIA) system to quantitatively assess the FL tumor microenvironment (TME);3) Compare the effectiveness of combined prognostic measure incorporating grade (without and with computer assistance), TME parameters and existing FLIPI score. The proposed research aims to develop a clinically relevant, pathology-based prognostic model in FL utilizing computer image analysis to incorporate grade, tumor microenvironment (TME), and immunohistochemical (IHC) markers. Due to the variable clinical course in FL and increasing treatment options, a prognostic index would allow therapies to be tailored to the patient. Patients with high risk disease may benefit form more intensive therapy, while patients with low risk disease may be appropriate for lower intensity therapy with a more favorable side effect profile. Furthermore, a prognostic index, which includes pathologic features, may ultimately become more relevant in the era of biologically targeted therapies. Our objective is to use advanced image analysis techniques to perform a quantitative and topographical study of the normal and tumor microenvironment and use this study as well as improved and consistent grading options in improving the current prognostic index. Our long-term goal is to translate the improved prognostic index results as better treatment options to FL patients. We plan to pursue the following three specific aims for this project:
Specific Aim 1 : Measure the prognostic impact of histologic grade (without and with computer assistance) of follicular lymphoma cases by comparing it with outcome measures;
Specific Aim 2 : Measure the impact of FL tumor microenvironment by comparing TME parameters with outcome measures;
Specific Aim 3 : Compare the effectiveness of combined prognostic measure incorporating grade (without and with computer assistance), TME parameters and existing FLIPI score. We have formed an experienced team with expertise in FL pathology and oncology, imaging and image analysis, observer studies and biostatistics. Successful completion of this project will exert a sustained and powerful impact on the field by the virtue of its development of a platform for researchers and clinicians to quantitatively and objectively evaluate FL TME, to improve the FL grading, and to incorporate these developments to form a better prognostic index. Microscopic image analysis software, which will be developed for quantification, will be usable for other diseases such as breast cancer, for which TME is also known to be an important predictor of clinical status. The software and data to carry out this project will be made freely available to the research community.

Public Health Relevance

The proposed research is relevant to public health because it will assist in improving the prognosis of follicular lymphoma, which is the second most common subtype of lymphoma in the Western World. Thus, the project is relevant to NIH's mission because it aligns with the NIH's goal to foster innovative research strategies and their applications as a basis for ultimately protecting and improving health.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
2R01CA134451-05A1
Application #
8758963
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Ossandon, Miguel
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Ohio State University
Department
Miscellaneous
Type
Schools of Medicine
DUNS #
City
Columbus
State
OH
Country
United States
Zip Code
43210
Kornaropoulos, Evgenios N; Niazi, M Khalid Khan; Lozanski, Gerard et al. (2014) Histopathological image analysis for centroblasts classification through dimensionality reduction approaches. Cytometry A 85:242-55
Das, Hiranmoy; Wang, Zhihui; Niazi, M Khalid Khan et al. (2013) Impact of diffusion barriers to small cytotoxic molecules on the efficacy of immunotherapy in breast cancer. PLoS One 8:e61398
Akakin, Hatice Cinar; Gurcan, Metin N (2012) Content-based microscopic image retrieval system for multi-image queries. IEEE Trans Inf Technol Biomed 16:758-69
Kong, Hui; Gurcan, Metin; Belkacem-Boussaid, Kamel (2011) Partitioning histopathological images: an integrated framework for supervised color-texture segmentation and cell splitting. IEEE Trans Med Imaging 30:1661-77
Belkacem-Boussaid, K; Samsi, S; Lozanski, G et al. (2011) Automatic detection of follicular regions in H&E images using iterative shape index. Comput Med Imaging Graph 35:592-602
Dundar, M Murat; Badve, Sunil; Bilgin, Gokhan et al. (2011) Computerized classification of intraductal breast lesions using histopathological images. IEEE Trans Biomed Eng 58:1977-84
Samsi, Siddharth; Lozanski, Gerard; Shana'ah, Arwa et al. (2010) Detection of follicles from IHC-stained slides of follicular lymphoma using iterative watershed. IEEE Trans Biomed Eng 57:2609-12
Sertel, Olcay; Lozanski, Gerard; Shana'ah, Arwa et al. (2010) Computer-aided detection of centroblasts for follicular lymphoma grading using adaptive likelihood-based cell segmentation. IEEE Trans Biomed Eng 57:2613-6
Belkacem-Boussaid, Kamel; Sertel, Olcay; Lozanski, Gerard et al. (2009) Extraction of color features in the spectral domain to recognize centroblasts in histopathology. Conf Proc IEEE Eng Med Biol Soc 2009:3685-8
Cooper, Lee; Sertel, Olcay; Kong, Jun et al. (2009) Feature-based registration of histopathology images with different stains: an application for computerized follicular lymphoma prognosis. Comput Methods Programs Biomed 96:182-92

Showing the most recent 10 out of 11 publications