In this proposal, we seek to develop a set of new tools to assess and enhance the efficacy of anti-cancer therapies that have immediate clinical relevance. In particular, we have developed and embedded methods for real-time quantitative parametric ultrasound imaging of vascular volume/density and flow rate to assess tumor therapies in a clinical scanner and will evaluate and validate those methods here.
Our aims for the assessment of therapeutic efficacy include: evaluate the use of ultrasound methods to estimate flow rate and vascular volume/density in the assessment of therapeutic response;migrate the methods to real-time, on-scanner measurement;and use ultrasound feedback together with histology to optimize treatment with a cocktail of appropriate drugs. Further, we endeavor to enhance therapeutic efficacy by increasing vascular permeability and nanoparticle accumulation using ultrasound. In our initial studies using 2-minute insonation with a low thermal dose, we found that accumulation of liposomes in an insonified tumor increases ~three-fold to as much as 22%ID/g and the accumulation within insonified muscle or lymph nodes increased 3-10 fold. At our site and others the combination of ablative therapies and nanoparticle drug administration has already begun and as MR-guided ultrasound enters the clinic, this combination will be used more frequently.
Our aims for the enhancement of efficacy with ultrasound are to: determine the mechanism for ultrasound-enhanced increases in vascular permeability;maximize ultrasound enhancement of the accumulation of particles in a tumor and surrounding tissue;establish a pharmacokinetic model that describes ultrasound-enhanced permeability;and compare the efficacy of particle injection immediately before and after ultrasound and incorporate US- enhanced delivery into a strategy that includes an anti-angiogenic drug, chemotherapeutics an ultrasound monitoring of response.

Public Health Relevance

Currently, one in 4 deaths in the United States is due to cancer. Many new therapeutic strategies can be employed;however, efficient methods to test these strategies are required. We are completing the development of an ultrasound-based strategy for the assessment of therapeutic efficacy that provides quantitative, repeatable and user-independent measures. Further, we are developing methods to enhance therapeutic efficacy using ultrasound by enhancing the accumulation of drug within the tumor.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Farahani, Keyvan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
Biomedical Engineering
Schools of Engineering
United States
Zip Code
Kheirolomoom, Azadeh; Ingham, Elizabeth S; Commisso, Joel et al. (2016) Intracellular trafficking of a pH-responsive drug metal complex. J Control Release 243:232-242
Shapiro, Galina; Wong, Andrew W; Bez, Maxim et al. (2016) Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. J Control Release 223:157-64
Wong, Andrew W; Fite, Brett Z; Liu, Yu et al. (2016) Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models. J Clin Invest 126:99-111
Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N et al. (2016) Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia. Phys Med Biol 61:5275-96
Seo, Jai Woong; Ang, JooChuan; Mahakian, Lisa M et al. (2015) Self-assembled 20-nm (64)Cu-micelles enhance accumulation in rat glioblastoma. J Control Release 220:51-60
Seo, Jai Woong; Mahakian, Lisa M; Tam, Sarah et al. (2015) The pharmacokinetics of Zr-89 labeled liposomes over extended periods in a murine tumor model. Nucl Med Biol 42:155-63
Liu, Yu; Fite, Brett Z; Mahakian, Lisa M et al. (2015) Concurrent Visualization of Acoustic Radiation Force Displacement and Shear Wave Propagation with 7T MRI. PLoS One 10:e0139667
Zhang, Hua; Tam, Sarah; Ingham, Elizabeth S et al. (2015) Ultrasound molecular imaging of tumor angiogenesis with a neuropilin-1-targeted microbubble. Biomaterials 56:104-13
Kheirolomoom, Azadeh; Ingham, Elizabeth S; Mahakian, Lisa M et al. (2015) CpG expedites regression of local and systemic tumors when combined with activatable nanodelivery. J Control Release 220:253-64
Fite, Brett Z; Wong, Andrew; Liu, Yu et al. (2015) Magnetic resonance imaging assessment of effective ablated volume following high intensity focused ultrasound. PLoS One 10:e0120037

Showing the most recent 10 out of 48 publications