Acute lymphoblastic leukemia (ALL) accounts for approximately 20% of all acute leukemia seen in adults, and is the single most common cancer diagnosed during childhood. Cure rates have improved significantly for children who receive intensive chemotherapy, but the prognosis for adults remains poor. Allogeneic hematopoietic stem cell transplantation (HCT) is the salvage treatment of choice for children with relapsed ALL who have appropriate donors and is increasingly being used to treat adults in first remission. Advances in donor selection and supportive care have improved the outcome for patients with ALL undergoing allogeneic HCT, and leukemia relapse or complications related to graft-versus-host disease (GVHD) have emerged as the most common causes of treatment failure. In principle, targeting malignant cells by adoptive T cell therapy could provide an approach to therapy that would have negligible toxicity to normal cells. This project seeks to promote the immunologic clearance of leukemic cells after HCT without aggravating GVHD by the adoptive transfer of T cells that are engineered to express a chimeric antigen receptor (CAR) specific for the CD19 molecule on ALL stem and progenitor cells. Recent collaborative work by the Co- Principal Investigators in a nonhuman primate model has demonstrated that virus-specific T cells derived from the central memory (TCM) subset of cells have the ability to persist long-term in vivo and establish a reservoir of functional T cell memory. In preliminary work, we have developed reagents necessary to arm human central memory T cells specific for cytomegalovirus (CMV) pp65 with a CD19- specific CAR. In this project, we will optimize the cell processing methods for clinical application and conduct a clinical trial in which "bi-specific" T-cells will be adoptively transferred following HCT to promote an antileukemic effect.
The specific aims are:
Aim 1. To determine the safety and anti-tumor activity of adoptive therapy with donor TCM-derived bi-specific (CMVpp65xCD19) CD8+ TE clones for patients with CD19+ ALL following HLA matched allogeneic HCT.
Aim 2. To evaluate novel CD19-specific CAR vectors that encode a marker for rapid selection of transduced T cells and a costimulatory domain in tandem with the CD36 chain.

Public Health Relevance

The majority of adults and a significant fraction of children that develop acute lymphoblastic leukemia (ALL) will die of progressive disease. The studies in this application will evaluate adoptive T cell therapy for ALL as an adjunct to hematopoietic stem cell transplantation using T cells that have an innate capacity to persist in vivo and are engineered to recognize a molecule expressed on the earliest leukemia progenitors. If this therapy safely eliminates residual ALL, this will improve the outcome of hematopoietic stem cell transplantation and provide opportunities to reduce the intensity of the preparative regimen and employ this therapy in the non-transplant setting.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA136551-04
Application #
8270382
Study Section
Clinical Oncology Study Section (CONC)
Program Officer
Merritt, William D
Project Start
2009-07-01
Project End
2014-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
4
Fiscal Year
2012
Total Cost
$542,633
Indirect Cost
$147,751
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Paszkiewicz, Paulina J; Fräßle, Simon P; Srivastava, Shivani et al. (2016) Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest 126:4262-4272
Busch, Dirk H; Fräßle, Simon P; Sommermeyer, Daniel et al. (2016) Role of memory T cell subsets for adoptive immunotherapy. Semin Immunol 28:28-34
Turtle, Cameron J; Hanafi, Laïla-Aïcha; Berger, Carolina et al. (2016) Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med 8:355ra116
Zah, Eugenia; Lin, Meng-Yin; Silva-Benedict, Anne et al. (2016) T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res 4:498-508
Liu, Lingfeng; Sommermeyer, Daniel; Cabanov, Alexandra et al. (2016) Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat Biotechnol 34:430-4
Gardner, Rebecca; Wu, David; Cherian, Sindhu et al. (2016) Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127:2406-10
Sommermeyer, D; Hudecek, M; Kosasih, P L et al. (2016) Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30:492-500
Turtle, Cameron J; Hanafi, Laïla-Aïcha; Berger, Carolina et al. (2016) CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 126:2123-38
Hudecek, Michael; Sommermeyer, Daniel; Kosasih, Paula L et al. (2015) The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 3:125-35
June, Carl H; Riddell, Stanley R; Schumacher, Ton N (2015) Adoptive cellular therapy: a race to the finish line. Sci Transl Med 7:280ps7

Showing the most recent 10 out of 34 publications