Endometrial cancer (cancer of the lining of the uterus) is the most common cancer of the female reproductive tract, with about forty thousand new cases in the United States each year. A number of common genetic alterations driving the initial steps of endometrial cancer progression have been documented, such as inactivating mutations of the tumor suppressor gene PTEN. However, PTEN mutations and most other well- documented genetic lesions in endometrial cancers represent early steps driving the formation of benign hyperplasias that remain confined to the uterus. In contrast, little is known about the molecular steps promoting the progression of hyperplasias to truly invasive, lethal cancers that can spread throughout the body. Here we propose to build upon a foundation of prior research carried out in our laboratory. Specifically, we have demonstrated that inactivation of the LKB1 tumor suppressor drives the formation of highly invasive cancers in both mice and humans. The functions of LKB1 are not entirely understood, but it is known to act via its direct target AMPK to inhibit mTOR, a master regulator of cell growth. LKB1 inactivation thus leads to increased mTOR activity, which in turn promotes increased cell proliferation and cancer. Our goals are to 1) gain a more detailed view of the biological impact of LKB1 loss upon endometrial cells and invasive growth;2) further define the molecular mechanisms by which LKB1 is inactivated in endometrial cancer;3) study the cooperation of LKB1 with other endometrial cancer genes through the use of an in vivo genetic model system, and thereby also develop more refined genetic models of endometrial cancer;and 4) explore the use of these genetic model systems to validate an mTOR inhibitor as a pathway-specific therapy against endometrial cancer. These interrelated goals will take advantage of unique reagents and approaches including a validated endometrial Cre deletor line that enable gene targeting specifically within endometrial epithelial cells. These studies will also take advantage of a previously developed bank of human endometrial tumor specimens. These studies will lead to insights into the biological and genetic basis of endometrial cancer, create significant opportunities to develop predictive DNA-based or immunohistochemical tests for prognosis, and may someday lead to the development of improved, targeted therapies to treat or prevent endometrial cancer formation and spread.

Public Health Relevance

Cancer of the endometrium (the inner lining of the uterus) is the most common cancer of the female reproductive tract. However, relatively little is known about the steps that promote the progression of benign precancers to fully malignant and lethal endometrial cancers. In this project we propose to develop and utilize new genetic model systems to discover and understand these critical steps. We will also use these models as platforms to test and validate new therapies to treat endometrial cancer. These studies will lead to insights into the biological and genetic basis of uterine cancer, create significant opportunities to develop predictive DNA-based or immunohistochemical tests for prognosis, and may someday lead to the development of improved, targeted therapies to treat or prevent uterine cancer formation and spread.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
3R01CA137181-04S1
Application #
8606327
Study Section
Cancer Genetics Study Section (CG)
Program Officer
Ogunbiyi, Peter
Project Start
2010-04-01
Project End
2015-01-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
4
Fiscal Year
2013
Total Cost
$32,454
Indirect Cost
$10,982
Name
University of Texas Sw Medical Center Dallas
Department
Pathology
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Aloisio, Gina M; Nakada, Yuji; Saatcioglu, Hatice D et al. (2014) PAX7 expression defines germline stem cells in the adult testis. J Clin Invest 124:3929-44
Baker, M D; Ezzati, M; Aloisio, G M et al. (2014) The small GTPase Rheb is required for spermatogenesis but not oogenesis. Reproduction 147:615-25
Hata, Aaron N; Yeo, Alan; Faber, Anthony C et al. (2014) Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers. Cancer Res 74:3146-56
Xu, Chunxiao; Fillmore, Christine M; Koyama, Shohei et al. (2014) Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 25:590-604
Aguilera, Kristina Y; Rivera, Lee B; Hur, Hoon et al. (2014) Collagen signaling enhances tumor progression after anti-VEGF therapy in a murine model of pancreatic ductal adenocarcinoma. Cancer Res 74:1032-44
Burd, Christin E; Sorrentino, Jessica A; Clark, Kelly S et al. (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152:340-51
Nakada, Yuji; Stewart, Thomas G; Pena, Christopher G et al. (2013) The LKB1 tumor suppressor as a biomarker in mouse and human tissues. PLoS One 8:e73449
Akbay, E A; Pena, C G; Ruder, D et al. (2013) Cooperation between p53 and the telomere-protecting shelterin component Pot1a in endometrial carcinogenesis. Oncogene 32:2211-9
Chen, Zhao; Cheng, Katherine; Walton, Zandra et al. (2012) A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483:613-7
Wolff, Nicholas C; Vega-Rubin-de-Celis, Silvia; Xie, Xian-Jin et al. (2011) Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol Cell Biol 31:1870-84

Showing the most recent 10 out of 12 publications