The ubiquitous human Epstein-Barr virus (EBV) has been shown to be linked to a wide range of human cancers which include Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, adult T-cell lymphomas and lymphoproliferative diseases in immunocompromised patients. In vitro, EBV can efficiently transform human primary B-cells in vitro resulting in continual proliferation of the infected primary B-cells into transformed lymphoblastoid cell lines (LCLs). The nascently transformed B-lymphocytes by EBV are strictly latent in that a select set of genes are expressed, one of which is Epstein-Barr nuclear antigen (EBNA)3C. EBNA3C has been shown to be essential for B cell transformation in vitro by genetic analysis of the virus. Over the last decade the functions associated with EBNA3C has linked this essential molecule to regulation of viral and cellular transcription through interaction with the transcription repressor CSL, Nm23-H1, the tumor suppressor molecule Rb and other cell cycle regulatory factors which include Cyclin A and Cyclin D1. This proposal will investigate the interactions of the essential EBV nuclear antigen 3C and the cellular factors E2F and c-Myc involved in regulation of cell proliferation, cell cycle, transcription, and signaling involved in maintenance of cellular homeostasis. The specific amino acids of these cellular targets c-Myc and E2F interacting with 3C will be explored and the functional relationships examined in terms of B cell transformation and immortalization. The post-translational modifications of c-Myc and E2F important for activation of their regulatory functions will also be fully investigated. Simultaneously, we will generate site specific recombinant EBNA3C molecules that are knocked out for the specific interactions within the EBV genome to determine their role in primary B cell transformation.

Public Health Relevance

The ubiquitous gammaherpesvirus Epstein Barr virus is associated with a range of human cancers. At least 6 latent genes have been shown to be critical for cell transformation in vitro. Some of these antigens associate directly with cell cycle regulatory proteins and are also linked to the specific regulation of cellular events which include regulation of transcription, chromatin remodeling, cell proliferation and cell cycle regulation. This proposal will explore the role of one of the essential nuclear antigens EBNA3C in determining a more comprehensive model for the related functions of EBNA3C in regulation of the major cellular oncoproteins E2F and c-Myc through post-translation modification and cell cycle regulation leading to transformation of human B cells.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IDM-R (04))
Program Officer
Daschner, Phillip J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Schools of Medicine
United States
Zip Code
Shukla, Sanket Kumar; Jha, Hem Chandra; El-Naccache, Darine W et al. (2016) An EBV recombinant deleted for residues 130-159 in EBNA3C can deregulate p53/Mdm2 and Cyclin D1/CDK6 which results in apoptosis and reduced cell proliferation. Oncotarget 7:18116-34
Jha, Hem C; Pei, Yonggang; Robertson, Erle S (2016) Epstein-Barr Virus: Diseases Linked to Infection and Transformation. Front Microbiol 7:1602
Jha, Hem C; Sun, Zhiguo; Upadhyay, Santosh K et al. (2016) KSHV-Mediated Regulation of Par3 and SNAIL Contributes to B-Cell Proliferation. PLoS Pathog 12:e1005801
Jha, Hem Chandra; Banerjee, Shuvomoy; Robertson, Erle S (2016) The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens 5:
Ghosh Roy, Shatadru; Robertson, Erle S; Saha, Abhik (2016) Epigenetic Impact on EBV Associated B-Cell Lymphomagenesis. Biomolecules 6:
Saha, Abhik; Jha, Hem C; Upadhyay, Santosh K et al. (2015) Epigenetic silencing of tumor suppressor genes during in vitro Epstein-Barr virus infection. Proc Natl Acad Sci U S A 112:E5199-207
Jha, Hem Chandra; Mehta, Devan; Lu, Jie et al. (2015) Gammaherpesvirus Infection of Human Neuronal Cells. MBio 6:e01844-15
Jha, Hem Chandra; Shukla, Sanket Kumar; Lu, Jie et al. (2015) Dissecting the contribution of EBNA3C domains important for EBV-induced B-cell growth and proliferation. Oncotarget 6:30115-29
Jha, Hem C; Yang, Karren; El-Naccache, Darine W et al. (2015) EBNA3C regulates p53 through induction of Aurora kinase B. Oncotarget 6:5788-803
Gandhi, Jaya; Gaur, Nivedita; Khera, Lohit et al. (2015) COX-2 induces lytic reactivation of EBV through PGE2 by modulating the EP receptor signaling pathway. Virology 484:1-14

Showing the most recent 10 out of 37 publications