There is now broad consensus that it will be impossible to understand and rationally intervene with the development and progression of cancer without understanding and specifically perturbing the networks that support the functioning of cancer cells. Here we formulate a novel approach for rational and efficient discovery of cancer cell-specific drug targets based on our capability to reconstruct gene networks through the integration of genetic experimentation with genomic, mathematical and computational/bioinformatics tools. The novelty of our approach lies in specifically considering and exploiting the notion that many features of the cancer cell phenotype only emerge as a result of the interplay between multiple co- operating oncogenic mutations. Through analysis of the molecular mechanisms underlying oncogene cooperativity we have identified genes that respond to the combined effect of two oncogenic mutations with synergistic alterations in their expression. Importantly, we have discovered that the regulation of such `cooperation response genes'(CRG) is critical for the cancer phenotype at surprisingly high frequency (14 out of 24 genes tested), indicating that oncogenic mutations cooperate through synergistic regulation of downstream gene networks. Remarkably, the genes involved can act as mediators in the control of multiple and diverse cellular processes, such as cell signaling, survival, motility, invasiveness and self-renewal indicating that cooperating oncogenic mutations simultaneously can affect multiple parallel cancer cell traits. Notably, the complex features underlying the malignant cell transformation process are strongly conserved in murine and human colon cells. Analysis of these features thus becomes feasible through a research strategy utilizing both a genetically tractable murine model of malignant transformation derived from colonic crypts combined with data validation in human colon cancer cells. Based on our observations we thus hypothesize (I) that CRGs are a class of genes essential for malignant cell transformation downstream of cooperating oncogenic mutations. In addition, we have preliminary evidence to show that regulation of CRG expression by cooperating oncogenic mutations is not independent but rather underlies strong hierarchical organization. We thus predict that (II) investigation of CRG network architecture provides a rational path to identification of cancer cell vulnerabilities and thus a novel class of drug targets. We also have discovered that the anti-cancer activity of histone deacetylase inhibitors (HDACi) is at least in part mediated through reversion of CRG expression patterns. We thus hypothesize (III) that CRG expression patterns can serve as indicators for selection of efficacious drugs with potential use in cancer intervention. Our approaches to test these hypotheses will lead directly to identification and validation of bona fide cancer cell-specific drug targets and drugs by rational means.

Public Health Relevance

Narrative One of the main motives for the molecular analysis of cancer is the need to develop rational approaches to the identification of effective cancer treatments. Target identification, however, is notoriously difficult and unpredictable at least in part, because cell regulation is inherently complex. Here we formulate a novel approach for rational and efficient discovery of cancer cell-specific drug targets downstream of oncogenic mutations based on our capability to reconstruct gene networks through the integration of genetic experimentation with genomic, mathematical and computational/bioinformatics tools.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA138249-04
Application #
8120203
Study Section
Special Emphasis Panel (ZCA1-GRB-I (O3))
Program Officer
Couch, Jennifer A
Project Start
2008-09-30
Project End
2013-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
4
Fiscal Year
2011
Total Cost
$524,632
Indirect Cost
Name
University of Rochester
Department
Genetics
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Komisarof, Justin; McCall, Matthew; Newman, Laurel et al. (2017) A four gene signature predictive of recurrent prostate cancer. Oncotarget 8:3430-3440
Smith, Bradley; Schafer, Xenia L; Ambeskovic, Aslihan et al. (2016) Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells. Cell Rep 17:821-836
McCall, Matthew N; McMurray, Helene R; Land, Hartmut et al. (2014) On non-detects in qPCR data. Bioinformatics 30:2310-6
Kinsey, Conan; Balakrishnan, Vijaya; O'Dell, Michael R et al. (2014) Plac8 links oncogenic mutations to regulation of autophagy and is critical to pancreatic cancer progression. Cell Rep 7:1143-55
Sampson, E R; McMurray, H R; Hassane, D C et al. (2013) Gene signature critical to cancer phenotype as a paradigm for anticancer drug discovery. Oncogene 32:3809-18
Gaur, Kriti; Li, Jinghong; Wang, Dakun et al. (2013) The Birt-Hogg-Dube tumor suppressor Folliculin negatively regulates ribosomal RNA synthesis. Hum Mol Genet 22:284-99
Hu, Xiaoyu; Dutta, Pranabananda; Tsurumi, Amy et al. (2013) Unphosphorylated STAT5A stabilizes heterochromatin and suppresses tumor growth. Proc Natl Acad Sci U S A 110:10213-8
Smith, Bradley; Land, Hartmut (2012) Anticancer activity of the cholesterol exporter ABCA1 gene. Cell Rep 2:580-90
Ashton, John M; Balys, Marlene; Neering, Sarah J et al. (2012) Gene sets identified with oncogene cooperativity analysis regulate in vivo growth and survival of leukemia stem cells. Cell Stem Cell 11:359-72