Myeloma is the second most common hematologic cancer. It thrives in the bone marrow and aggressively disseminates throughout the skeleton causing osteolysis, debilitating pain and devastating side effects. The tumors eventually become chemoresistant leading to patient death. The Sanderson Lab is dedicated to understanding how heparanase promotes the aggressive behavior of myeloma and to using that knowledge to develop curative therapies for myeloma patients. During the previous funding period, we identified multiple mechanisms through which heparanase drives myeloma progression and metastasis and established heparanase as a viable target for myeloma therapy. Moreover, we catalyzed collaborative efforts aimed at developing and testing novel anti-heparanase drugs and demonstrated their efficacy against myeloma in vivo. Based on our work, one of these inhibitors recently entered clinical trials in myeloma patients. Thus, we accomplished the goals proposed in our previous application including translation of our work to the clinic. The challenge now is t maximize anti-heparanase therapy to enhance tumor killing;a goal that will be attained by a thorough understanding of heparanase mechanisms of action. To this end, we have made two discoveries that provide novel insight into how heparanase regulates myeloma behavior: (i) heparanase enhances the secretion and alters the composition and function of tumor cell-derived exosomes and (ii) heparanase facilitates development of myeloma chemoresistance. These discoveries lay the foundation for studies proposed in this competitive renewal. Our working hypothesis for Aim 1 is that heparanase regulation of exosomes facilitates robust tumor-host crosstalk that drives myeloma progression and metastasis and that these exosomes are targets for anti-heparanase therapy and sources of disease biomarkers. Exosomes will be tested for their impact on behavior of both host and tumor cells using in vitro and in vivo models and anti-heparanase therapy will be tested for its ability to diminish exosome secretion by tumors thereby inhibiting tumor progression. The protein composition of exosomes from myeloma patient sera will be assessed for levels of heparanase, syndecan-1 and other cargo to determine their value as biomarkers of disease. Our working hypothesis for Aim 2 is that heparanase promotes chemoresistance and that use of heparanase inhibitors in tandem with chemotherapeutic drugs will overcome chemoresistance and enhance tumor killing. Using in vitro and in vivo models we will identify which commonly used anti-myeloma drugs exhibit a diminished ability to kill when tumor cells are expressing high levels of heparanase. Once identified, those drugs will be tested in combination with anti-heparanase drugs to determine if this increases tumor killing efficiency in vivo. The proposed work is innovative and significant because it couples the discovery of new heparanase mechanisms of action with the objectives of identifying novel biomarkers, maximizing anti- heparanase therapy and improving patient outcome.

Public Health Relevance

Heparanase is a protein made by cancer cells that plays a major role in helping them grow and spread throughout the body. This project is designed to study novel aspects of heparanase function with the goal of maximizing the use of new anti-heparanase drugs to block cancer growth and spread.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
2R01CA138340-06
Application #
8629150
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Woodhouse, Elizabeth
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Alabama Birmingham
Department
Pathology
Type
Schools of Medicine
DUNS #
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Stewart, Mark D; Sanderson, Ralph D (2014) Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biol 35:56-9
Ramani, Vishnu C; Sanderson, Ralph D (2014) Chemotherapy stimulates syndecan-1 shedding: a potentially negative effect of treatment that may promote tumor relapse. Matrix Biol 35:215-22
Vlodavsky, Israel; Blich, Miry; Li, Jin-Ping et al. (2013) Involvement of heparanase in atherosclerosis and other vessel wall pathologies. Matrix Biol 32:241-51
Ramani, Vishnu C; Purushothaman, Anurag; Stewart, Mark D et al. (2013) The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J 280:2294-306
Vlodavsky, Israel; Iozzo, Renato V; Sanderson, Ralph D (2013) Heparanase: multiple functions in inflammation, diabetes and atherosclerosis. Matrix Biol 32:220-2
Ruan, Jian; Trotter, Timothy N; Nan, Li et al. (2013) Heparanase inhibits osteoblastogenesis and shifts bone marrow progenitor cell fate in myeloma bone disease. Bone 57:10-7
Thompson, Camilla A; Purushothaman, Anurag; Ramani, Vishnu C et al. (2013) Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J Biol Chem 288:10093-9
Ramani, Vishnu C; Pruett, Pamela S; Thompson, Camilla A et al. (2012) Heparan sulfate chains of syndecan-1 regulate ectodomain shedding. J Biol Chem 287:9952-61
Purushothaman, Anurag; Hurst, Douglas R; Pisano, Claudio et al. (2011) Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem 286:30377-83
Ramani, Vishnu C; Yang, Yang; Ren, Yongsheng et al. (2011) Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. J Biol Chem 286:6490-9

Showing the most recent 10 out of 13 publications