Hepatocellular carcinoma (HCC) is a highly aggressive cancer with no currently available effective treatment. Understanding the molecular mechanism of HCC development and progression is imperative to develop novel, effective and targeted therapies for this lethal disease. Our recent findings reveal that Astrocyte Elevated Gene-1 (AEG-1) plays an important role in HCC pathogenesis. In human HCC samples AEG-1 mRNA and protein were significantly overexpressed compared to normal liver and in a subset of HCC patients AEG-1 gene itself was amplified. In 109 HCC patients, AEG-1 protein was overexpressed in >90% cases and AEG-1 expression level showed significant correlation with the stages and grades of the disease. Forced overexpression of AEG-1 in less aggressive HCC cells resulted in highly aggressive, angiogenic and metastatic tumors in nude mice. Conversely, inhibition of AEG-1 significantly abrogated growth of highly aggressive HCC cells in nude mice. In HCC cells, AEG-1 activated pro-survival signaling pathways such as MEK/ERK, PI3K/Akt, NF-?B and Wnt signaling pathways that are known to contribute to hepatocarcinogenesis and AEG-1 modulated specific genes regulating invasion, angiogenesis, chemoresistance and senescence. Additionally, AEG-1 protected primary human hepatocytes from induction of senescence. These findings strongly indicate that AEG-1 plays an important role in regulating HCC development and progression. AEG-1 is located both on the cell surface and in intracellular compartments including the nucleus. While the cell surface located AEG-1 facilitates metastasis by adhering to the endothelium, our findings indicate that the intracellular AEG-1 might contribute to the initial steps of tumorigenesis, such as immortalization and transformation, by turning on pro-survival signals and modulating gene expression. We have previously shown that AEG-1 functions as a transcriptional co-activator and presently we identify as an AEG-1 interacting partner Staphylococcal Nuclease Domain Containing-1 (SND1) which regulates gene expression by modulating transcription, mRNA splicing, RNA interference and mRNA stability. The long-term objectives of the present proposal are to identify key players regulating HCC pathogenesis and translate that knowledge for developing novel and effective targeted therapies. The immediate objectives of the present proposal are to analyze the role of AEG-1 in hepatocarcinogenesis in a transgenic mouse model;elucidate the role of AEG-1-SND1 interaction in mediating AEG-1 function as well as hepatocarcinogenesis;and establish AEG-1 as a diagnostic and prognostic marker for HCC by analyzing patient-derived HCC samples. Successful completion of the proposed studies will provide in-depth insights into structural and functional realms of AEG-1 thus facilitating development of strategies to block AEG-1 as a potential therapeutic regimen for HCC.

Public Health Relevance

Astrocyte elevated gene-1 (AEG-1) is overexpressed in hepatocellular carcinoma (HCC) patients and plays a key role in regulating hepatocarcinogenesis by turning on pro- survival signals and modulating global gene expression. The proposed studies aim at understanding AEG-1 function by using a transgenic mouse model and analyzing AEG-1 interacting proteins and establishing AEG-1 as a diagnostic and prognostic marker for HCC.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Molecular Oncogenesis Study Section (MONC)
Program Officer
Ogunbiyi, Peter
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Virginia Commonwealth University
Schools of Medicine
United States
Zip Code
Srivastava, Jyoti; Siddiq, Ayesha; Gredler, Rachel et al. (2015) Astrocyte elevated gene-1 and c-Myc cooperate to promote hepatocarcinogenesis in mice. Hepatology 61:915-29
Robertson, Chadia L; Srivastava, Jyoti; Siddiq, Ayesha et al. (2014) Genetic deletion of AEG-1 prevents hepatocarcinogenesis. Cancer Res 74:6184-93
Sokhi, Upneet K; Bacolod, Manny D; Emdad, Luni et al. (2014) Analysis of global changes in gene expression induced by human polynucleotide phosphorylase (hPNPase(old-35)). J Cell Physiol 229:1952-62
Azab, Belal M; Dash, Rupesh; Das, Swadesh K et al. (2014) Enhanced prostate cancer gene transfer and therapy using a novel serotype chimera cancer terminator virus (Ad.5/3-CTV). J Cell Physiol 229:34-43
Menezes, Mitchell E; Das, Swadesh K; Emdad, Luni et al. (2014) Genetically engineered mice as experimental tools to dissect the critical events in breast cancer. Adv Cancer Res 121:331-82
Srivastava, Jyoti; Robertson, Chadia L; Rajasekaran, Devaraja et al. (2014) AEG-1 regulates retinoid X receptor and inhibits retinoid signaling. Cancer Res 74:4364-77
Sarkar, Devanand; Fisher, Paul B (2013) AEG-1/MTDH/LYRIC: clinical significance. Adv Cancer Res 120:39-74
Emdad, Luni; Das, Swadesh K; Dasgupta, Santanu et al. (2013) AEG-1/MTDH/LYRIC: signaling pathways, downstream genes, interacting proteins, and regulation of tumor angiogenesis. Adv Cancer Res 120:75-111
Lee, Seok-Geun; Kang, Dong-Chul; DeSalle, Rob et al. (2013) AEG-1/MTDH/LYRIC, the beginning: initial cloning, structure, expression profile, and regulation of expression. Adv Cancer Res 120:1-38
Sarkar, Devanand; Fisher, Paul B (2013) Advances in Cancer Research. AEG-1/MTDH/LYRIC implicated in multiple human cancers. Preface. Adv Cancer Res 120:xi-xiv

Showing the most recent 10 out of 33 publications