The dismal prognosis of patients diagnosed with invasive and metastatic cancer points to our limited arsenal of effective anti-cancer therapies. The central importance of EGFR/HER2/RAS pathway activation has been well established in neoplastic transformation and tumorigenesis. An important goal in cancer biology is to identify means of countervailing activated EGFR/HER2/RAS signals and reverse malignant transformation. Drosophila SEVEN-IN-ABSENTIA (SINA) and its human homolog SIAHs belong to an evolutionarily conserved family of the RING domain E3 ligases that are an essential downstream signaling component required for RAS signal transduction. We have made three observations that form the basis for this application: (1) we show that SIAH is a novel biomarker in human cancer;(2) we demonstrate and that proper SIAH function is critical for RAS signaling pathway. By inhibiting SIAH2 function, we have completely blocked tumorigenesis in eleven of the most aggressive human cancer cell lines known. (3) By using anti-SIAH2 molecules, we have also completely inhibited metastasis (extravasation) in four of the most aggressive and metastatic human cancer cell lines in nude mice. Certainly, we are cognizant that the results are still preliminary due to the imperfections of the xenograft models. To address the imperfections and expand these observations, we propose to accomplish the following two aims in this revised grant proposal: (I) To delineate SIAH2 function in cancer, through a proteomic approach, we identified three LIM domain proteins, TRIP6/FHL2/LPXN, as novel SIAH2-interacting proteins from three of the most aggressive human cancer cell lines used. We provide extensive biochemical evidence to show that TRIP6/FHL2/LPXN are bona fide SIAH2 substrates. These new SIAH2 substrates can successfully rescue cell motility and viability defects observed in SIAH2-deficient cancer cells, suggesting that these focal adhesion proteins may represent one of many diverse signaling modules that function downstream of SIAH2 in mediating aspects of RAS-dependent signaling in normal development and cancer. This finding may provide a novel mechanism to explain how ERBB/RAS activation reduces cell adhesion, increases cell motility and promotes invasion and metastasis in tumor cells. (II) In Aim 2, we will extend the observations made in nude mice to a more robust in vivo system to test the anti-tumor efficacy of anti-SIAH molecules in transgenic mouse cancer models. These preclinical studies are necessary to demonstrate the effectiveness of anti-SIAH2-based anticancer strategy in animal models. Our preliminary data indicate that SIAH2-insufficiency blocks K-RAS-mediated lung tumor formation in mice. We will validate the molecular regulation of SIAH2- TRIP6/FHL2/LPXN interaction using the inducible mouse models to understand the molecular dynamics of SIAH2 action in modulating cell junction, adhesion and migration in response to RAS activation in mice. Ultimately, we hope that the knowledge gained from these studies will be useful to identify novel anti-SIAH2- based molecular mechanism(s) to inhibit tumor growth and metastasis in the future.

Public Health Relevance

Our results indicate that inhibiting SIAH2 function may represent a logical and effective means to inhibit oncogenic K-RAS signaling and impede tumorigenesis and metastasis in the most aggressive forms of human cancer cells in nude mice. We hope to identify the function and mechanism of SIAH2 action downstream of RAS pathway in human cancer cells as well as in mouse models of human cancer. By targeting the most downstream signaling gatekeeper module required for RAS signal transduction, SIAH2 may represent a novel and logical drug target of therapeutic intervention in the treatment of metastatic diseases in our fight against human cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA140550-02
Application #
8132473
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Woodhouse, Elizabeth
Project Start
2010-08-20
Project End
2015-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
2
Fiscal Year
2011
Total Cost
$288,830
Indirect Cost
Name
Eastern Virginia Medical School
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
058625146
City
Norfolk
State
VA
Country
United States
Zip Code
23501
Pepper, Ian J; Van Sciver, Robert E; Tang, Amy H (2017) Phylogenetic analysis of the SINA/SIAH ubiquitin E3 ligase family in Metazoa. BMC Evol Biol 17:182
Jin, Xin; Pan, Yunqian; Wang, Liguo et al. (2017) Fructose-1,6-bisphosphatase Inhibits ERK Activation and Bypasses Gemcitabine Resistance in Pancreatic Cancer by Blocking IQGAP1-MAPK Interaction. Cancer Res 77:4328-4341
van Reesema, Lauren L Siewertsz; Zheleva, Vasilena; Winston, Janet S et al. (2016) SIAH and EGFR, Two RAS Pathway Biomarkers, are Highly Prognostic in Locally Advanced and Metastatic Breast Cancer. EBioMedicine 11:183-198
Siewertsz van Reesema, Lauren L; Lee, Michael P; Zheleva, Vasilena et al. (2016) RAS pathway biomarkers for breast cancer prognosis. Clin Lab Int 40:18-23
Burket, Jessica A; Benson, Andrew D; Tang, Amy H et al. (2015) NMDA receptor activation regulates sociability by its effect on mTOR signaling activity. Prog Neuropsychopharmacol Biol Psychiatry 60:60-5
Qin, R; Smyrk, T C; Reed, N R et al. (2015) Combining clinicopathological predictors and molecular biomarkers in the oncogenic K-RAS/Ki67/HIF-1? pathway to predict survival in resectable pancreatic cancer. Br J Cancer 112:514-22
Burket, Jessica A; Benson, Andrew D; Tang, Amy H et al. (2014) Rapamycin improves sociability in the BTBR T(+)Itpr3(tf)/J mouse model of autism spectrum disorders. Brain Res Bull 100:70-5
Deutsch, Stephen I; Tang, Amy H; Burket, Jessica A et al. (2014) NMDA receptors on the surface of cancer cells: target for chemotherapy? Biomed Pharmacother 68:493-6
Burket, Jessica A; Benson, Andrew D; Tang, Amy H et al. (2013) D-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res Bull 96:62-70
Podratz, Jewel L; Staff, Nathan P; Froemel, Dara et al. (2011) Drosophila melanogaster: a new model to study cisplatin-induced neurotoxicity. Neurobiol Dis 43:330-7

Showing the most recent 10 out of 13 publications