Over 30% of all incurable lung adenocarcinomas have a KRAS mutation and, despite the impressive advances in targeted therapies over past several years, no approved or highly effective targeted therapy exists for this subset of lung cancers. Recently, we have used comprehensive approaches, including interrogation of genetically-engineered mouse models (GEMMs), to examine the efficacy of novel therapeutic strategies for KRAS-mutant lung cancers. For example, 2 promising treatments are the combination of PI3K inhibitors with MEK inhibitors and docetaxel with MEK inhibitors, both which have activity in KRAS-mutant lung cancers. However, these approaches are not effective in the subset of KRAS-mutant cancers with concomitant loss of LKB1 (kinase that phosphorylates AMPK), suggesting these cancers may require unique targeted therapies. We found that, while Kras/p53-mutant cancers - which are susceptible to these therapies - had strong activation of MEK-ERK pathway, the resistant Kras/Lkb1-mutant lung cancers had strikingly minimal engagement of this pathway. This finding provides mechanistic insight to the primary resistance of Kras/Lkb1 lung cancers to combination therapies with MEK inhibitors. However, recent findings suggest that cancers with LKB1 deficiency have altered metabolic wiring that could potentially be exploited by targeted therapy approaches that would be specifically effective in this subset of cancers. We will accelerate our research to tackle the problem of KRAS-mutant lung cancers.
We aim to identify potent, tolerable therapies that will target KRAS-mutant lung cancers both with/without intact LKB1. We have used genome-wide genetic screens, metabolic profiling, and kinase inhibitor screens to identify promising therapeutic strategies for LKB1-deficient and -intact KRAS-mutant lung cancers. In particular, we developed a novel screen to identify targets that specifically combine with MEK inhibitors for KRAS-mutant lung cancers, and have already validated one, an MEK and BCL-XL inhibitor combination, that demonstrated impressive activity in genetically-engineered mouse models and xenografts. Since MEK inhibitor-based regimens may not be effective against LKB1 deficient cancers, we developed a novel screen to identify targets whose inhibition is specifically toxic to LKB1-mutant cancers, and validated 2 potential targets, DTYMK and CHEK1, that regulate pyrimidine metabolism and DNA damage response, respectively. We seek to comprehensively develop these potential therapeutic targets in vivo using GEMMs and primary human lung cancer explant xenografts to prepare for clinical implementation of new therapeutic approaches. Further, we will interrogate hundreds of human KRAS-mutant lung cancer specimens to determine if features distinguishing Lkb1-intact and -mutant cancers in the genetically- engineered mouse models are also observed in their human counterparts. We are confident that successful implementation of the aims will yield important mechanistic insights into the signal transduction and metabolic wiring of the various subtypes of KRAS-mutant lung cancers and lead to development of therapeutics that specifically target each subset.

Public Health Relevance

Advanced lung cancers are incurable and current treatments are inadequate. Currently, there are no effective targeted therapies for lung cancers that have a mutation in the KRAS gene, the most commonly mutated oncogene in lung cancer. Moreover, research from our previous R01 demonstrated that KRAS mutant lung cancer is actually a collection of several different diseases, and each will require its own personalized therapy. In this proposal, we aim to utilize cutting-edge technologies in laboratory research, from genetic screens, genetically engineered mouse models, to assessment of patient specimens to pioneer new therapies that will effectively treat this collection of cancers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA140594-06
Application #
8643192
Study Section
Special Emphasis Panel (ZRG1-BMCT-C (01))
Program Officer
Forry, Suzanne L
Project Start
2009-08-03
Project End
2018-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
6
Fiscal Year
2014
Total Cost
$496,876
Indirect Cost
$85,683
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Tchaicha, Jeremy H; Akbay, Esra A; Altabef, Abigail et al. (2014) Kinase domain activation of FGFR2 yields high-grade lung adenocarcinoma sensitive to a Pan-FGFR inhibitor in a mouse model of NSCLC. Cancer Res 74:4676-84
Zhu, Zehua; Aref, Amir R; Cohoon, Travis J et al. (2014) Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov 4:452-65
Nakayama, Sohei; Sng, Natasha; Carretero, Julian et al. (2014) ?-catenin contributes to lung tumor development induced by EGFR mutations. Cancer Res 74:5891-902
Faber, Anthony C; Coffee, Erin M; Costa, Carlotta et al. (2014) mTOR inhibition specifically sensitizes colorectal cancers with KRAS or BRAF mutations to BCL-2/BCL-XL inhibition by suppressing MCL-1. Cancer Discov 4:42-52
Chen, Zhao; Akbay, Esra; Mikse, Oliver et al. (2014) Co-clinical trials demonstrate superiority of crizotinib to chemotherapy in ALK-rearranged non-small cell lung cancer and predict strategies to overcome resistance. Clin Cancer Res 20:1204-11
Herter-Sprie, Grit S; Korideck, Houari; Christensen, Camilla L et al. (2014) Image-guided radiotherapy platform using single nodule conditional lung cancer mouse models. Nat Commun 5:5870
Lau, Allison N; Curtis, Stephen J; Fillmore, Christine M et al. (2014) Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO J 33:468-81
Lovly, Christine M; McDonald, Nerina T; Chen, Heidi et al. (2014) Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat Med 20:1027-34
Christensen, Camilla L; Kwiatkowski, Nicholas; Abraham, Brian J et al. (2014) Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26:909-22
Chen, Zhao; Fillmore, Christine M; Hammerman, Peter S et al. (2014) Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14:535-46

Showing the most recent 10 out of 46 publications