Multiple myeloma (MM) is a malignant disorder of differentiated B-cells (plasma cells) and remains incurable. The growth and chemotherapeutic resistance of the MM cells is supported by the bone marrow microenvironment (BMM) through the continuous expression and secretion of chemokines and cytokines. The best-characterized myeloma growth factor is interleukin 6 (IL-6), which is found at high serum levels in MM patients, and has been directly related to the pathogenesis of MM. Consequently, IL-6 production has been identified as a therapeutic target to inhibit MM cell growth and resistance to chemotherapeutics. The goal of the proposal is to generate potent inhibitors of IL-6 production for the use as single agents, or as additives to current therapeutics, to enhance the overall therapeutic outcome of multiple myeloma treatment. Our lab has recently reported a class of small molecular weight scaffolds as potent inhibitors of IL-6 production. The lead compound was capable of inhibiting IL-6 production in human blood at nanomolar concentrations via a mechanism that may be unique among other inhibitors described in the literature. Given the central role of IL-6 in the pathogenesis of multiple myeloma, this proposal is focused on the elucidation of the mode of action and optimization of this class of inhibitors as single agents and adjuvant agents for the treatment of multiple myeloma. The goals of this proposal are to discover the mode of action for IL-6 inhibition, establishing efficacy by using single and adjuvant treatment in multiple myeloma cells and design and execute an enantioselective synthesis to improve access to these potent IL-6 inhibitors.

Public Health Relevance

Multiple myeloma (MM) remains incurable and MM cells are intrinsically resistant to traditional chemotherapeutic drugs due to the activation of IL-6 mediated growth and survival pathways. We have discovered a potent IL-6 inhibitor capable of reducing IL-6 levels in stimulated human blood and killing MM cells. This project is focused on determining the mode of action of these agents and establishing efficacy in a range of MM cells under conditions that mimic the bone marrow microenvironment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA142644-03
Application #
8230745
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Howcroft, Thomas K
Project Start
2010-05-01
Project End
2013-04-28
Budget Start
2012-03-01
Budget End
2013-04-28
Support Year
3
Fiscal Year
2012
Total Cost
$266,137
Indirect Cost
$84,989
Name
Michigan State University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
193247145
City
East Lansing
State
MI
Country
United States
Zip Code
48824
Gjidoda, Alison; Henry, R William (2013) RNA polymerase III repression by the retinoblastoma tumor suppressor protein. Biochim Biophys Acta 1829:385-92
Lansdell, Theresa A; Hurchla, Michelle A; Xiang, Jingyu et al. (2013) Noncompetitive modulation of the proteasome by imidazoline scaffolds overcomes bortezomib resistance and delays MM tumor growth in vivo. ACS Chem Biol 8:578-87
Azevedo, Lauren M; Lansdell, Theresa A; Ludwig, Jacob R et al. (2013) Inhibition of the human proteasome by imidazoline scaffolds. J Med Chem 56:5974-8
Kuszpit, Michael R; Wulff, William D; Tepe, Jetze J (2011) One-pot synthesis of 2-imidazolines via the ring expansion of imidoyl chlorides with aziridines. J Org Chem 76:2913-9
Qu, Ke; Fisk, Jason S; Tepe, Jetze J (2011) Azomethine ylide mediated inversion of configuration of quaternary imidazoline carbon: converting trans- to its cis- imidazolines. Tetrahedron Lett 52:4840-4842
Hewlett, Nicole M; Tepe, Jetze J (2011) Total synthesis of the natural product (±)-dibromophakellin and analogues. Org Lett 13:4550-3