An essential step in metastatic dissemination of tumor cells involves intravasation where the carcinoma cell must cross the basement membrane of the duct/acinus and then the basement membrane of the endothelium of blood vessels. The ability to degrade and penetrate the dense extracellular matrix of a basement membrane is important for transmigration in both cases. Degradation and penetration of basement membranes is generally believed to require protrusive activity of tumor cells, in particular, the formation of invadopodia and lamallipodia, which are regulated by EGF receptor and tyrosine kinase signaling. Invadopodia are protrusions of the tumor cell membrane with associated protease activity. The ability to make invadopodia is correlated with metastatic potential in tumor cells. To identify the mechanisms regulating the steps to invadopodium maturation, and thereby understand how invadopodia are involved in both chemotaxis and invasion of tumor cells, during the previous funding period we studied the initiation and maturation of invadopodia in detail. During these studies we identified 4 stages of formation of an invadopodium: precursor formation;activation of actin polymerization;stabilization and ECM degradation. During progression through these stages, key regulatory events were identified including: 1. N-WASp activation dependent recruitment of cortactin;2. the regulation of cofilin activity by binding of cofilin to cortactin;3. Cofilin and N-WASp dependent actin polymerization;4. Arg-dependent cortactin phosphorylation which regulates #s 1-3;5. Rho-family G-protein dependent regulation of N-WASp, cofilin and degradation of ECM. In this application we propose to study each of these regulatory events, and the mechanisms by which they are choreographed, during invadopodium formation and cancer cell migration.

Public Health Relevance

Metastasis is the primary cause of death for cancer patients. Escape from the primary tumor and invasion into a new tissue depends on the ability of cancer cells to migrate. The initial step in breast carcinoma cell invasion involves tumor cells crossing the basement membrane of the mammary duct/acinus. An essential step in metastatic dissemination of tumor cells involves intravasation where the carcinoma cell must again cross the basement membrane of the endothelium of blood vessels. Degradation and penetration of basement membranes is generally believed to require protrusive activity of tumor cells, in particular the formation of invadopodia and lamallipodia. In this application we propose to study the regulation and function of invadopodia in breast tumor cells.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA150344-25
Application #
8444334
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Mohla, Suresh
Project Start
1988-02-01
Project End
2015-01-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
25
Fiscal Year
2013
Total Cost
$332,597
Indirect Cost
$132,237
Name
Albert Einstein College of Medicine
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Weidmann, Maxwell D; Surve, Chinmay R; Eddy, Robert J et al. (2016) Mena(INV) dysregulates cortactin phosphorylation to promote invadopodium maturation. Sci Rep 6:36142
Carmona, G; Perera, U; Gillett, C et al. (2016) Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE. Oncogene 35:5155-69
Balsamo, Michele; Mondal, Chandrani; Carmona, Guillaume et al. (2016) The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior. Sci Rep 6:35298
Leung, E; Xue, A; Wang, Y et al. (2016) Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene :
Knutsdottir, Hildur; Condeelis, John S; Palsson, Eirikur (2016) 3-D individual cell based computational modeling of tumor cell-macrophage paracrine signaling mediated by EGF and CSF-1 gradients. Integr Biol (Camb) 8:104-19
Pignatelli, Jeanine; Bravo-Cordero, Jose Javier; Roh-Johnson, Minna et al. (2016) Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/Mena(INV)-initiated invadopodium formation. Sci Rep 6:37874
Rodriguez-Tirado, Carolina; Kitamura, Takanori; Kato, Yu et al. (2016) Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window. J Vis Exp :
Szulczewski, Joseph M; Inman, David R; Entenberg, David et al. (2016) In Vivo Visualization of Stromal Macrophages via label-free FLIM-based metabolite imaging. Sci Rep 6:25086
Oudin, Madeleine J; Hughes, Shannon K; Rohani, Nazanin et al. (2016) Characterization of the expression of the pro-metastatic Mena(INV) isoform during breast tumor progression. Clin Exp Metastasis 33:249-61
Jimenez, Lizandra; Sharma, Ved P; Condeelis, John et al. (2015) MicroRNA-375 Suppresses Extracellular Matrix Degradation and Invadopodial Activity in Head and Neck Squamous Cell Carcinoma. Arch Pathol Lab Med 139:1349-61

Showing the most recent 10 out of 42 publications