Anaplastic large cell lymphoma (ALCL) is an aggressive systemic T-cell lymphoma. ALCL tumors are characterized by distinct expression of CD30 proteins on the cell surface and abnormal expression of the anaplastic lymphoma kinase (ALK) gene due to chromosomal translocations. Expression of the ALK gene has been demonstrated to be a key pathogenic factor for ALCL development. The current standard treatment for ALCL is a multi-drug chemotherapy regimen, which is neither tumor cell- nor tumor gene-specific, and thus, can cause severe side effects. In addition, no imaging technique specific for in vivo detection and monitoring of ALCL tumors has been developed. In this study, we will take advantage of the CD30 surface biomarker and the abnormal ALK gene expression in ALCL tumor cells to develop a 'bifunctional nanomedicine'for both specific treatment and in vivo imaging of ALCL tumors using nanotechnology. To achieve this goal, we will 1). Assemble a bifunctional nanomedicine for specific treatment and in vivo imaging of ALCL;2). In vitro validate the selective ALCL cell binding, specific ALK gene silencing, and cellular effects of the bifunctional nanomedicine;3). Test the in vivo imaging of ALCL tumors by the bifunctional nanomedicine;and 4). In vivo study the therapeutic effects of the bifunctional nanomedicine on ALCL tumors. The development of this bifunctional nanomedicine should provide a new treatment specific for ALCL tumors with no toxicity to normal tissues. In addition, it should enable physicians to in vivo image ALCL tumors and monitor therapeutic responses in a real-time manner.

Public Health Relevance

Anaplastic large cell lymphoma (ALCL) is an aggressive T-cell lymphoma. Current challenges in ALCL management include the lack of specific imaging detection methods and specific therapeutic agents. To address these challenges simultaneously, we will develop a novel bifunctional nanomedicine that is tumor cell-selective and tumor gene-specific for ALCL. Our proposed study is extremely important in fighting ALCL, because the development of this bifunctional nanomedicine should provide a new treatment specific for ALCL tumors with no toxicity to normal tissues. In addition, it should enable physicians to in vivo image ALCL tumors and monitor therapeutic responses in a real-time manner.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA151955-04
Application #
8459532
Study Section
Nanotechnology Study Section (NANO)
Program Officer
Tandon, Pushpa
Project Start
2010-06-17
Project End
2015-04-30
Budget Start
2013-05-02
Budget End
2014-04-30
Support Year
4
Fiscal Year
2013
Total Cost
$291,367
Indirect Cost
$102,168
Name
Methodist Hospital Research Institute
Department
Type
DUNS #
185641052
City
Houston
State
TX
Country
United States
Zip Code
77030
Wen, Jianguo; Tao, Wenjing; Kuiatse, Isere et al. (2015) Dynamic balance of multiple myeloma clonogenic side population cell percentages controlled by environmental conditions. Int J Cancer 136:991-1002
Zhao, Nianxi; Pei, Sung-nan; Parekh, Parag et al. (2014) Blocking interaction of viral gp120 and CD4-expressing T cells by single-stranded DNA aptamers. Int J Biochem Cell Biol 51:10-8
Zeng, Zihua; Parekh, Parag; Li, Zheng et al. (2014) Specific and sensitive tumor imaging using biostable oligonucleotide aptamer probes. Theranostics 4:945-52
Zhao, Nianxi; You, Jian; Zeng, Zihua et al. (2013) An ultra pH-sensitive and aptamer-equipped nanoscale drug-delivery system for selective killing of tumor cells. Small 9:3477-84
Parekh, Parag; Kamble, Sanchit; Zhao, Nianxi et al. (2013) Biostable ssDNA aptamers specific for Hodgkin lymphoma. Sensors (Basel) 13:14543-57
Hong, Bin; Zu, Youli (2013) Detecting circulating tumor cells: current challenges and new trends. Theranostics 3:377-94
Parekh, Parag; Kamble, Sanchit; Zhao, Nianxi et al. (2013) Immunotherapy of CD30-expressing lymphoma using a highly stable ssDNA aptamer. Biomaterials 34:8909-17
Zhao, Nianxi; Qi, Jianjun; Zeng, Zihua et al. (2012) Transfecting the hard-to-transfect lymphoma/leukemia cells using a simple cationic polymer nanocomplex. J Control Release 159:104-10
Zhao, Nianxi; Bagaria, Hitesh G; Wong, Michael S et al. (2011) A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnology 9:2