This project involves (1) the development of a novel instrument for optical imaging of the human breast, and (2) pilot clinical tests to demonstrate the effectiveness of the proposed instrument in detecting breast cancer and monitoring response to neoadjuvant therapy of breast cancer. The proposed instrument features levels of spatial sampling (25 points/cm2 on the x-y scanning plane), spectral sampling (0.5 points/nm over the wavelength band 650-1000 nm), and temporal resolution (20 full spectra/s) that are not simultaneously achieved by any existing optical mammography instrument. These instrumentation capabilities will be used to enhance the information content of optical mammograms in terms of spatial information (depth discrimination, tomographic reconstruction of hemoglobin/water/lipid/scattering-parameters distributions), quantitative oximetry, and temporal hemodynamics characterization. The planned clinical tests will specifically test the hypothesis that intrinsic optical contrast provided by hemoglobin, water, lipids, and scattering parameters in breast tissue allows for the detection of breast cancer, its discrimination from benign breast lesions, and for monitoring effectiveness of neoadjuvant breast cancer therapy. The broad objective of this application is the development of optical mammography as a stand-alone clinical tool for breast cancer detection, and for monitoring effectiveness of therapy.

Public Health Relevance

This research can open new opportunities for clinical practice in the areas of breast cancer detection and prediction of response to treatment. In fact, the proposed instrument for optical imaging of the breast provides functional information (hemodynamics, oxygenation, water/lipids distribution, etc.) that is complementary to the information provided by existing clinical imaging modalities, thus potentially enhancing detection of breast cancer and its discrimination from benign lesions. Furthermore, because the proposed instrument uses safe levels of non-ionizing near-infrared light, it allows for repeated breast examinations on a weekly or even daily basis for continuous monitoring of breast cancer progression or regression.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA154774-03
Application #
8461711
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Zhang, Yantian
Project Start
2011-07-12
Project End
2016-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
3
Fiscal Year
2013
Total Cost
$442,875
Indirect Cost
$102,831
Name
Tufts University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
073134835
City
Medford
State
MA
Country
United States
Zip Code
02155
Krishnamurthy, Nishanth; Kainerstorfer, Jana M; Sassaroli, Angelo et al. (2016) Broadband optical mammography instrument for depth-resolved imaging and local dynamic measurements. Rev Sci Instrum 87:024302
Anderson, Pamela G; Sassaroli, Angelo; Kainerstorfer, Jana M et al. (2016) Optical mammography: bilateral breast symmetry in hemoglobin saturation maps. J Biomed Opt 21:101403
Fantini, Sergio; Sassaroli, Angelo; Tgavalekos, Kristen T et al. (2016) Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics 3:031411
Tgavalekos, Kristen T; Kainerstorfer, Jana M; Sassaroli, Angelo et al. (2016) Blood-pressure-induced oscillations of deoxy- and oxyhemoglobin concentrations are in-phase in the healthy breast and out-of-phase in the healthy brain. J Biomed Opt 21:101410
Kainerstorfer, Jana M; Sassaroli, Angelo; Fantini, Sergio (2016) Optical oximetry of volume-oscillating vascular compartments: contributions from oscillatory blood flow. J Biomed Opt 21:101408
Sassaroli, Angelo; Kainerstorfer, Jana M; Fantini, Sergio (2016) Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy. J Theor Biol 389:132-45
Kainerstorfer, Jana M; Sassaroli, Angelo; Tgavalekos, Kristen T et al. (2015) Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy. J Cereb Blood Flow Metab 35:959-66
Kainerstorfer, Jana M; Sassaroli, Angelo; Fantini, Sergio (2014) Coherent hemodynamics spectroscopy in a single step. Biomed Opt Express 5:3403-16
Pierro, Michele L; Kainerstorfer, Jana M; Civiletto, Amanda et al. (2014) Reduced speed of microvascular blood flow in hemodialysis patients versus healthy controls: a coherent hemodynamics spectroscopy study. J Biomed Opt 19:026005
Kainerstorfer, Jana M; Sassaroli, Angelo; Hallacoglu, Bertan et al. (2014) Practical steps for applying a new dynamic model to near-infrared spectroscopy measurements of hemodynamic oscillations and transient changes: implications for cerebrovascular and functional brain studies. Acad Radiol 21:185-96

Showing the most recent 10 out of 19 publications