The ultimate goal of this project is to elucidate the molecular and cellular regulatory mechanisms of miR-140 in colon cancer. Human colon cancer is highly heterogeneous, and systemic drug treatment is almost never able to cure individuals with late stage tumors. One major reason for the failure of chemotherapy is the resistant cancer stem cell population: current chemotherapeutics target rapidly dividing cancer cells, but cancer stem cells divide slowly, and thus are relatively resistant to cytotoxic systemic therapies. Our recent studies showed that several non-coding miRNAs are involved in the resistance mechanism in colon cancer stem cells. In particular, we demonstrated that the cell proliferation of differentiated colon cancer cells was significantly reduced by over- expressing miR-140. As a result, these cells became more resistant to 5-fluorouracil (5-FU) or methotrexate (MTX) treatment. We further revealed that the expression of miR-140 was elevated in a small population of CD133+HICD44+HI colon cancer stem-like cells. These cells are highly resistant to 5-FU treatment, and by blocking miR-140 activity using anti-miR140 oligonucleotides, we were able to increase chemosensitivity to 5-FU (1). We also discovered that one of the key targets of miR-140 is histone deacetylase 4 (HDAC4), implying that miR-140 could potentially modulate transcriptional activation of genes involved in cell cycle control through HDAC4. Given the potential of this new paradigm whereby miRNAs, acting post-transcriptionally, can impact pathways leading to cancer growth and altered chemosensitivity, to offer new options for treatment, it is essential to follow up and extend our findings: We therefore propose three specific aims: (1) To investigate the mechanisms of miR-140 in contributing to proliferation, differentiation and chemoresistance in CD133+HICD44+HI colon cancer stem cells in vitro and in vivo;(2) To investigate the impact of miR-140 on colon cancer metastasis;and (3) To define the molecular targets and interaction networks impacted by miR-140, taking advantage of a powerful new approach, TrIP-Seq, to identify miRNA regulation at the translational level, even in small stem cell populations. This proposed project will provide the molecular basis for developing miR-140-based therapeutic strategies to overcome chemoresistance in colon cancer stem cells and to improve patient survival.

Public Health Relevance

This project will help to develop a new paradigm in our current understanding of the tumor biology as it relates to miR-140 function. This, in turn, may lead to the development of novel targeted therapies to colon cancer stem cells and enhance our understanding of chemoresistance in cancer, which fits the scope of the National Cancer Institute's mission to eliminate cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Basic Mechanisms of Cancer Therapeutics Study Section (BMCT)
Program Officer
Arya, Suresh
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
State University New York Stony Brook
Schools of Medicine
Stony Brook
United States
Zip Code
Fesler, Andrew; Jiang, Jingting; Zhai, Haiyan et al. (2014) Circulating microRNA testing for the early diagnosis and follow-up of colorectal cancer patients. Mol Diagn Ther 18:303-8
Zhai, Haiyan; Fesler, Andrew; Ju, Jingfang (2013) MicroRNA: a third dimension in autophagy. Cell Cycle 12:246-50
Zhai, Haiyan; Karaayvaz, Mihriban; Dong, Peixin et al. (2013) Prognostic significance of miR-194 in endometrial cancer. Biomark Res 1:
Ju, Jingfang; Jiang, Jingting; Fesler, Andrew (2013) miRNA: the new frontier in cancer medicine. Future Med Chem 5:983-5
Zhai, Haiyan; Fesler, Andrew; Schee, Kristina et al. (2013) Clinical significance of long intergenic noncoding RNA-p21 in colorectal cancer. Clin Colorectal Cancer 12:261-6
Karaayvaz, M; Zhai, H; Ju, J (2013) miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis 4:e659
Karaayvaz, Mihriban; Zhang, Cecilia; Liang, Sharon et al. (2012) Prognostic significance of miR-205 in endometrial cancer. PLoS One 7:e35158
Zhai, Haiyan; Ju, Jingfang (2011) Implications of microRNAs in colorectal cancer development, diagnosis, prognosis, and therapeutics. Front Genet 2: