Transforming Growth Factor-Beta (TGF-?) has profound immunosuppressive effects on a variety of immune cells. Natural killer (NK) cells are large granular lymphocytes that constitute a vital component of the innate immune system. NK cells produce abundant interferon gamma (IFN-?) to enhance tumor cell recognition and destruction, and to clear viral infection, including herpes simplex oncolytic viruses (OVs) in glioblastoma (GBM) treatment. Due to its complexity, TGF-? signaling has not been fully characterized. It also remains to be determined whether TGF-? itself or TGF-? signaling can be modulated to control NK cell functions in order to better control tumor progression and to enhance OV therapeutic efficacy in GBM. We hypothesize that TGF-? signaling can be further elucidated and modulated in NK cells to better understand cancer progression and enhance cancer treatment. Our goal is to investigate the molecular basis of how TGF-? suppresses NK anti-tumor activity by identifying the elements directly involved in this process, and to study the potential to increase the signaling to improve NK anti-tumor activity, but to decrease NK activity by pre-TGF-? treatment in the context of OV therapy, where NK cells limit OV expansion and therapeutic efficacy. Our proposed studies have a great potential to advance GBM treatment and/or GBM prevention and make us understand more about tumor and virus recognition and destruction. We will test our hypothesis through three Aims: 1) To determine the molecular basis of transcriptional repression of NK cell function by TGF-?;2) Can we disrupt TGF-? signaling to increase immune responses, and, in turn, to control GBM progression in vivo? 3) To augment TGF-? signaling in NK cells to enhance OV therapy efficacy in GBM.

Public Health Relevance

Glioblastoma (GBM) is the most common and aggressive brain tumor in humans. Although we have researched it for decades, survival time of patients suffering from GBM remains extremely poor. In this application, our first goal is to understand a very important negative signaling initiated by a cytokine, TGF-?. The other goal of this application is to either inhibit or enhance this signaling especially in NK cells at different contexts to treat GBM using our excellent animal models. Eventually, our long-term goal is to apply these studies in patients when we prove they are effective and safe.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01CA155521-03
Application #
8710094
Study Section
Transplantation, Tolerance, and Tumor Immunology Study Section (TTT)
Program Officer
Yovandich, Jason L
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Ohio State University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Columbus
State
OH
Country
United States
Zip Code
43210
Deng, Youcai; Chu, Jianhong; Ren, Yulin et al. (2014) The natural product phyllanthusmin C enhances IFN-? production by human NK cells through upregulation of TLR-mediated NF-?B signaling. J Immunol 193:2994-3002
Chu, J; Deng, Y; Benson, D M et al. (2014) CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 28:917-27
Rao, Wei; Zhang, Wujie; Poventud-Fuentes, Izmarie et al. (2014) Thermally responsive nanoparticle-encapsulated curcumin and its combination with mild hyperthermia for enhanced cancer cell destruction. Acta Biomater 10:831-42
Ren, Yulin; Lantvit, Daniel D; Deng, Youcai et al. (2014) Potent cytotoxic arylnaphthalene lignan lactones from Phyllanthus poilanei. J Nat Prod 77:1494-504
Freud, Aharon G; Yu, Jianhua; Caligiuri, Michael A (2014) Human natural killer cell development in secondary lymphoid tissues. Semin Immunol 26:132-7
Hughes, Tiffany; Briercheck, Edward L; Freud, Aharon G et al. (2014) The transcription Factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells. Cell Rep 8:150-62
Thorne, Amy Haseley; Meisen, Walter H; Russell, Luke et al. (2014) Role of cysteine-rich 61 protein (CCN1) in macrophage-mediated oncolytic herpes simplex virus clearance. Mol Ther 22:1678-87
Yoo, Ji Young; Hurwitz, Brian S; Bolyard, Chelsea et al. (2014) Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clin Cancer Res 20:3787-98
Chu, Jianhong; He, Shun; Deng, Youcai et al. (2014) Genetic modification of T cells redirected toward CS1 enhances eradication of myeloma cells. Clin Cancer Res 20:3989-4000
Kim, Tae Hyong; Song, Jieun; Kim, Sung-Hak et al. (2014) Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells. Neuro Oncol 16:1354-64

Showing the most recent 10 out of 16 publications