DNA damage induces a variety of responses including, oxidative stress, apoptosis and premature senescence. These responses have been implicated both in aging and cancer. During the previous funding period, we observed evidence for significant roles of the nucleotide excision repair (NER) protein DDB2, which is mutated in xeroderma pigmentosum and under-expressed in squamous cell carcinoma, in DNA damage response. First, DDB2 plays an essential role in apoptosis induced by DNA damaging agents. In the absence of DDB2, DNA damaging agents cause cells to accumulate p21 at a very high level, leading to an inhibition of apoptosis. Deletion or depletion of p21 restores apoptosis in DDB2-deficient cells, indicating that the DDB2-mediated regulation of p21 is critical for apoptosis following DNA damage. Because of p21 accumulation, we investigated premature senescence. Surprisingly, the DDB2-/- MEFs escape senescence at a high frequency. Moreover, DDB2-/- MEFs or DDB2-depleted human cells do not exhibit oxidative stress in that they do not accumulate significant level of reactive oxygen species (ROS) following DNA damage. The lack of oxidative stress results from high-level expression of the antioxidant genes MnSOD and catalase. We observed evidence that DDB2 transcriptionally inhibits expression of MnSOD and catalase. Thus, in addition to characterizing its role in NER, we identified two new functions of DDB2 (proteolysis of p21 and transcriptional inhibition of the antioxidant genes) that are critical in apoptosis, oxidative stress and premature senescence following DNA damage. DDB2 associates with the E3 ubiquitin ligase Cul4-DDB1, which has been implicated also in gene regulation. In the current proposal, we will determine the mechanism that activates the DDB2-containing Cul4-DDB1 complex to target p21 for ubiquitination following DNA damage. Also, we will test the hypothesis that the DDB2- containing Cul4-DDB1 complex plays a central role in mediating oxidative stress following DNA damage by repressing expression of the antioxidant genes. The hypotheses will be tested through the following specific aims: 1. How does DDB2 induce proteolysis of p21 after DNA damage? 2. What is the mechanism by which DDB2 regulates the antioxidant genes? 3. Is DDB2 a mediator of oxidative stress and premature senescence following DNA damage? 4. Does the impaired premature senescence contribute to UVB-induced skin carcinogenesis in the DDB2-deficient mice?

Public Health Relevance

Health Relevance: DDB2 was identified as the product of the XP-E gene, which is mutated in xeroderma pigmentosum. It is under-expressed in many cancers, including squamous cell carcinoma (Skin and Head &Neck). We found that, in addition to its role in DNA repair, DDB2 has other functions that are significant in cancer and aging. In this application, we plan to investigate the cellular pathways that are modulated by DDB2 that protect from DNA damage-induced mutations, and prevent development of squamous cell carcinoma.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA156164-08
Application #
8265302
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Pelroy, Richard
Project Start
2004-07-01
Project End
2015-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
8
Fiscal Year
2012
Total Cost
$316,002
Indirect Cost
$114,727
Name
University of Illinois at Chicago
Department
Biochemistry
Type
Schools of Medicine
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Bommi, Prashant V; Ravindran, Sriram; Raychaudhuri, Pradip et al. (2018) DDB2 regulates Epithelial-to-Mesenchymal Transition (EMT) in Oral/Head and Neck Squamous Cell Carcinoma. Oncotarget 9:34708-34718
Fantini, Damiano; Huang, Shuo; Asara, John M et al. (2017) Chromatin association of XRCC5/6 in the absence of DNA damage depends on the XPE gene product DDB2. Mol Biol Cell 28:192-200
Huang, Shuo; Fantini, Damiano; Merrill, Bradley J et al. (2017) DDB2 Is a Novel Regulator of Wnt Signaling in Colon Cancer. Cancer Res 77:6562-6575
Wang, Zebin; Zheng, Yu; Park, Hyun Jung et al. (2013) Targeting FoxM1 effectively retards p53-null lymphoma and sarcoma. Mol Cancer Ther 12:759-67
Roy, Nilotpal; Bommi, Prashant V; Bhat, Uppoor G et al. (2013) DDB2 suppresses epithelial-to-mesenchymal transition in colon cancer. Cancer Res 73:3771-82
Roy, Nilotpal; Elangovan, Indira; Kopanja, Dragana et al. (2013) Tumor regression by phenethyl isothiocyanate involves DDB2. Cancer Biol Ther 14:108-16
Roy, Nilotpal; Bagchi, Srilata; Raychaudhuri, Pradip (2012) Damaged DNA binding protein 2 in reactive oxygen species (ROS) regulation and premature senescence. Int J Mol Sci 13:11012-26
Stoyanova, Tanya; Roy, Nilotpal; Bhattacharjee, Shaumick et al. (2012) p21 cooperates with DDB2 protein in suppression of ultraviolet ray-induced skin malignancies. J Biol Chem 287:3019-28
Wang, Zebin; Park, Hyun Jung; Carr, Janai R et al. (2011) FoxM1 in tumorigenicity of the neuroblastoma cells and renewal of the neural progenitors. Cancer Res 71:4292-302
Kopanja, Dragana; Roy, Nilotpal; Stoyanova, Tanya et al. (2011) Cul4A is essential for spermatogenesis and male fertility. Dev Biol 352:278-87

Showing the most recent 10 out of 11 publications