Tumors express a range of antigens including self-antigens. CD4+CD25+ regulatory T (Treg) cells are critical for maintaining T cell tolerance to self-antigens. Treg cells are thought to dampen tumor associated antigen (TAA)-specific T cell immunity and to be the main obstacle tempering successful immunotherapy and active vaccination. Therefore, manipulation of regulatory T cells, including depletion, blocking trafficking into tumors, or reducing their differentiation/expansion, survival and suppressive mechanisms represent new strategies for cancer treatment. However, it remains poorly understood how Tregs survive and function in the environment with chronic hypoxia and nutrient depletion, and how the phenotypic and suppressor integrity of Tregs is maintained in the tumor microenvironment enriched with high levels of inflammatory factors. In this proposal, based on our preliminary data, we hypothesize that hypoxia activates the "stemness program" of Treg cells, reshapes local immune profile in the tumor microenvironment and contributes to tumor immune evasion. To test this hypothesis, extensive experiments are proposed herein along with three specific aims:
Aim 1 is to test the hypothesis that hypoxia activates the "stemness program" in human tumor Tregs.
Aim 2 is to test the hypothesis that hypoxia promotes Treg functional stability and integrity in human tumor.
Aim 3 is to test the hypothesis that hypoxia activates key molecular targets in tumor Tregs.

Public Health Relevance

CD4+CD25+ regulatory T (Treg) cells are critical for maintaining T cell tolerance to self-antigens. Treg cells are thought to dampen tumor associated antigen (TAA)-specific T cell immunity and to be the main obstacle tempering successful immunotherapy and active vaccination. Therefore, manipulation of regulatory T cell biology represents new strategies for cancer treatment. In the application we examine the effects of hypoxia on Treg cells in the tumor. We may identify important molecular pathways controlling Treg biology in human tumor. The application may provide insight into new approaches in cancer therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA156685-02
Application #
8207912
Study Section
Cancer Immunopathology and Immunotherapy Study Section (CII)
Program Officer
Howcroft, Thomas K
Project Start
2011-01-01
Project End
2015-12-31
Budget Start
2012-01-01
Budget End
2012-12-31
Support Year
2
Fiscal Year
2012
Total Cost
$322,663
Indirect Cost
$115,163
Name
University of Michigan Ann Arbor
Department
Surgery
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Kryczek, Ilona; Lin, Yanwei; Nagarsheth, Nisha et al. (2014) IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40:772-84
Crespo, Joel; Sun, Haoyu; Welling, Theodore H et al. (2013) T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol 25:214-21
Cui, Tracy X; Kryczek, Ilona; Zhao, Lili et al. (2013) Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 39:611-21
Kryczek, Ilona; Liu, Suling; Roh, Michael et al. (2012) Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer 130:29-39