Tumors express a range of antigens including self-antigens. CD4+CD25+ regulatory T (Treg) cells are critical for maintaining T cell tolerance to self-antigens. Treg cells are thought to dampen tumor associated antigen (TAA)-specific T cell immunity and to be the main obstacle tempering successful immunotherapy and active vaccination. Therefore, manipulation of regulatory T cells, including depletion, blocking trafficking into tumors, or reducing their differentiation/expansion, survival and suppressive mechanisms represent new strategies for cancer treatment. However, it remains poorly understood how Tregs survive and function in the environment with chronic hypoxia and nutrient depletion, and how the phenotypic and suppressor integrity of Tregs is maintained in the tumor microenvironment enriched with high levels of inflammatory factors. In this proposal, based on our preliminary data, we hypothesize that hypoxia activates the """"""""stemness program"""""""" of Treg cells, reshapes local immune profile in the tumor microenvironment and contributes to tumor immune evasion. To test this hypothesis, extensive experiments are proposed herein along with three specific aims:
Aim 1 is to test the hypothesis that hypoxia activates the """"""""stemness program"""""""" in human tumor Tregs.
Aim 2 is to test the hypothesis that hypoxia promotes Treg functional stability and integrity in human tumor.
Aim 3 is to test the hypothesis that hypoxia activates key molecular targets in tumor Tregs.

Public Health Relevance

CD4+CD25+ regulatory T (Treg) cells are critical for maintaining T cell tolerance to self-antigens. Treg cells are thought to dampen tumor associated antigen (TAA)-specific T cell immunity and to be the main obstacle tempering successful immunotherapy and active vaccination. Therefore, manipulation of regulatory T cell biology represents new strategies for cancer treatment. In the application we examine the effects of hypoxia on Treg cells in the tumor. We may identify important molecular pathways controlling Treg biology in human tumor. The application may provide insight into new approaches in cancer therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA156685-03
Application #
8403990
Study Section
Cancer Immunopathology and Immunotherapy Study Section (CII)
Program Officer
Howcroft, Thomas K
Project Start
2011-01-01
Project End
2015-12-31
Budget Start
2013-01-01
Budget End
2013-12-31
Support Year
3
Fiscal Year
2013
Total Cost
$303,303
Indirect Cost
$108,253
Name
University of Michigan Ann Arbor
Department
Surgery
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Nagarsheth, Nisha; Wicha, Max S; Zou, Weiping (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17:559-572
Maj, Tomasz; Wang, Wei; Crespo, Joel et al. (2017) Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 18:1332-1341
Wang, Weimin; Kryczek, Ilona; Dostál, Lubomír et al. (2016) Effector T Cells Abrogate Stroma-Mediated Chemoresistance in Ovarian Cancer. Cell 165:1092-1105
Zhao, Ende; Maj, Tomasz; Kryczek, Ilona et al. (2016) Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol 17:95-103
Nagarsheth, Nisha; Peng, Dongjun; Kryczek, Ilona et al. (2016) PRC2 Epigenetically Silences Th1-Type Chemokines to Suppress Effector T-Cell Trafficking in Colon Cancer. Cancer Res 76:275-82
Zou, Weiping; Wolchok, Jedd D; Chen, Lieping (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med 8:328rv4
Peng, Dongjun; Kryczek, Ilona; Nagarsheth, Nisha et al. (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527:249-53
Kryczek, Ilona; Lin, Yanwei; Nagarsheth, Nisha et al. (2014) IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40:772-784
Cui, Tracy X; Kryczek, Ilona; Zhao, Lili et al. (2013) Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 39:611-21
Crespo, Joel; Sun, Haoyu; Welling, Theodore H et al. (2013) T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol 25:214-21

Showing the most recent 10 out of 15 publications