Development of breast cancer risk model based on estrogen metabolomics. Anti-estrogens provide an effective strategy to prevent breast cancer but eligible women generally decline therapy because of unfavorable benefit/risk ratios. Data from prevention studies indicate that fifty women need to be treated with these agents for five years to prevent one breast cancer. To improve the ratio of benefit to risk, a more powerful method of identifying women at very high risk of developing breast cancer is urgently needed. Prediction of disease risk is best grounded on factors involved in its pathogenesis. We propose an integrative hypothesis regarding the carcinogenic process which involves both estrogen receptor alpha (ER?) dependent as well as ER? independent actions. Through ER?, estradiol (E2) stimulates proliferation with resultant replicative mutations and promotes the growth of cells harboring those mutations. Independent of ER?, estrogen metabolites both form unstable DNA adducts and generate oxygen free radicals thorough redox cycling to initiate mutations. Several genetically regulated enzymes modulate estrogen metabolism and the process of repair of estrogen induced mutations. Our innovative hypothesis regarding estrogen induced breast cancer integrates all of these processes into a model of carcinogenesis and implicates the entire estrogen metabolome in the genesis of breast cancer. These concepts suggest that measurement of estrogen metabolomics should provide a powerful, mechanism-based method of predicting who will develop breast cancer. Metabolomic assessment entails quantitative measurement of aromatizable androgens, estrogens, and their metabolites and SNPs from enzymes regulating the metabolic process. Several important factors have recently come together to enable us to test this concept. A new, state of the art, mass spectrometer coupled with an ultra-performance liquid chromatography system makes it possible for the first time to measure all estrogen metabolites in small amounts of serum. We can measure SNPs which involve enzymes regulating estrogen metabolism and have been shown to correlate with breast cancer risk. To develop a model, we will utilize serum samples and risk factor data from 3 cohort studies (NYU, Clue I and II, and Rancho Bernardo) which had collected blood from women 5-20 years ago and then followed them prospectively for development of breast cancer. Availability of these techniques, samples and risk factor data allows performance of a nested case-control study to develop a new, more powerful risk prediction model. We will then validate this model in a completely independent data set involving the French Teacher's Study. We anticipate reducing the number of women needed to be treated to prevent one breast cancer from 50 to 13 with tamoxifen and to 5.with aromatase inhibitors.

Public Health Relevance

Breast Cancer is a common disease and prevention is the best therapeutic strategy. This project will develop a risk prediction model which will allow identification of women with a high probability of a being diagnosed with breast cancer over the next 10 years. These women will be likely to accept aromatase inhibitors as a means to prevent breast cancer and the public health impact will be substantial.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA158328-02
Application #
8550778
Study Section
Epidemiology of Cancer Study Section (EPIC)
Program Officer
Shelburne, Nonniekaye F
Project Start
2012-09-25
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
2
Fiscal Year
2013
Total Cost
$335,808
Indirect Cost
$28,044
Name
University of Virginia
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Wang, Qingqing; Bottalico, Lisa; Mesaros, Clementina et al. (2015) Analysis of estrogens and androgens in postmenopausal serum and plasma by liquid chromatography-mass spectrometry. Steroids 99:76-83
Mesaros, Clementina; Wang, Qingqing; Blair, Ian A (2014) What are the main considerations for bioanalysis of estrogens and androgens in plasma and serum samples from postmenopausal women? Bioanalysis 6:3073-5
Snyder, Nathaniel W; Revello, Sonia D; Liu, Xiaojing et al. (2013) Cellular uptake and antiproliferative effects of 11-oxo-eicosatetraenoic acid. J Lipid Res 54:3070-7