Malignant melanoma initiating cells (MMICs) are minority subpopulations in which clinical virulence resides as a consequence of unlimited self-renewal capacity, resulting in inexorable tumor progression and potential metastasis. Our laboratories have recently identified human MMICs and shown them to express the targetable biomarker and multidrug resistance transporter, ABCB5 (Nature, Jan 17, 2008). In this study, proof of principle of immune-mediated MMIC destruction and consequent inhibition of tumor growth was demonstrated. More recently, we have shown that MMICs employ mechanisms to thwart endogenous anti-tumor immunity via the B7-2 and PD1 pathways (Cancer Res, Jan 15, 2010). This proposal seeks to further advance these findings in a translationally-relevant manner with the goal of accelerating progress toward clinical application of anti- melanoma immune therapies specifically targeting MMICs.
The specific aims of this proposal are: (1) Characterization of ABCB5+ MMIC response to immunotherapy in human patients and assessment/prediction of MMIC therapeutic response;(2) In vivo dissection of antitumor immunity pathway interactions with MMIC in a novel humanized xenotransplantation model, melanoma to hu-PBMC NOD-scid IL2r3null mice;and (3) Preclinical immunomodulatory/MMIC-targeted combination therapies. This initiative should enhance the rapid development and refinement of targeted immunotherapies directed against MMICs, and thus holds great promise for rapid evolution to clinical testing.

Public Health Relevance

Malignant melanoma, a form of cancer that is increasing faster than any other cancer worldwide, becomes deadly once it spreads from a primary skin tumor (sometimes no larger than a grain of rice) to the body's vital organs. Until now, there is no effective therapy for metastatic melanoma, in large part because the most virulent melanoma cells, called cancer stem cells, are resistant to treatment. We have successfully identified these virulent melanoma stem cells, and have developed strategies to immunologically target and eliminate them, and this grant proposal advances this research to a point whereby patients with otherwise incurable disease may significantly benefit.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA158467-03
Application #
8685190
Study Section
Cancer Immunopathology and Immunotherapy Study Section (CII)
Program Officer
Welch, Anthony R
Project Start
2012-09-01
Project End
2017-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Jiang, Dongsheng; Muschhammer, Jana; Qi, Yu et al. (2016) Suppression of Neutrophil-Mediated Tissue Damage-A Novel Skill of Mesenchymal Stem Cells. Stem Cells 34:2393-406
Kleffel, Sonja; Lee, Nayoung; Lezcano, Cecilia et al. (2016) ABCB5-Targeted Chemoresistance Reversal Inhibits Merkel Cell Carcinoma Growth. J Invest Dermatol 136:838-46
Lutz, Norbert W; Banerjee, Pallavi; Wilson, Brian J et al. (2016) Expression of Cell-Surface Marker ABCB5 Causes Characteristic Modifications of Glucose, Amino Acid and Phospholipid Metabolism in the G3361 Melanoma-Initiating Cell Line. PLoS One 11:e0161803
Schatton, Tobias; Schütte, Ute; Frank, Markus H (2016) Effects of Malignant Melanoma Initiating Cells on T-Cell Activation. Methods Mol Biol :
Gomes, Camilla B F; Zechin, Karina G; Xu, Shuyun et al. (2016) TET2 Negatively Regulates Nestin Expression in Human Melanoma. Am J Pathol 186:1427-34
Kueckelhaus, Maximilian; Fischer, Sebastian; Lian, Christine G et al. (2015) Utility of sentinel flaps in assessing facial allograft rejection. Plast Reconstr Surg 135:250-8
de Waard, Nadine E; Kolovou, Paraskevi E; McGuire, Sean P et al. (2015) Expression of Multidrug Resistance Transporter ABCB5 in a Murine Model of Human Conjunctival Melanoma. Ocul Oncol Pathol 1:182-189
Kleffel, Sonja; Posch, Christian; Barthel, Steven R et al. (2015) Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth. Cell 162:1242-56
Gray, Elin S; Reid, Anna L; Bowyer, Samantha et al. (2015) Circulating Melanoma Cell Subpopulations: Their Heterogeneity and Differential Responses to Treatment. J Invest Dermatol 135:2040-8
Ma, Jie; Frank, Markus H (2015) Isolation of Circulating Melanoma Cells. Methods Mol Biol :

Showing the most recent 10 out of 30 publications