Late detection and drug resistance have maintained the grim statistics for ovarian cancer (OvCa) for over 30 years (with a projected 21,880 new cases and 13,850 deaths in 2010). New approaches using combination therapies with mechanistically distinct components are hypothesized to be most effective. However, sequential administration of multiple therapies has failed to impact survival. This proposal addresses this issue along with other key barriers in the treatment of OvCa. The long term goal is to develop, integrate and validate key platform technologies to combine quantitative fluorescence imaging for drug delivery monitoring and customized dosimetry with "Targeted Phototoxic Multi-Inhibitor Liposomes" (TPMILs) that selectively target and simultaneously block interconnected survival pathways associated with aggressive OvCa. To address the grueling toxicities and frequent recurrence that cause OvCa-related deaths, we leverage our nanotechnology program to fabricate TPMILs for simultaneous intracellular delivery of targeted inhibitors, and deliver combination regimens with photodynamic therapy (PDT), an FDA-approved photochemistry-based treatment that has shown clinical promise for OvCa. PDT is effective on chemo and radiation resistant cells and synergizes with chemotherapeutic and biologic agents resulting in improved efficacy. The goals will be realized in 4 specific aims: (1) Synthesize, optimize and characterize TPMILs for triple combination therapy of OvCa. (2) Customize and calibrate hyperCFME for online, in vivo imaging of TPMILs and micronodular OvCa. (3) Establish image-guided treatment planning for OvCa-targeted PDT. (4) Evaluate the impact of using TPMILs and customized PDT-dosimetry on acute treatment response and survival enhancement. Major deliverables of this proposal will be (i) two reproducible, well-characterized TPMILs for multi-agent delivery with optimized targeting moiety surface densities and therapeutic agent payloads;(ii) a custom built, high-resolution, minimally-invasive imaging system calibrated for online tumor burden and drug concentration quantification;(iii) the optimal drug-light interval that provides sufficient BPD accumulation at the best TPMIL TNR, and the threshold PDT dose;(iv) determination of customized dosimetry benefit to treatment tolerance, acute tumor reduction, and survival;and, (v) identification of the optimal targeting moiety (mAb versus customized cyclic peptide). The findings from this study will impact outcomes for patients with advanced (stage II-IV) and resistant OvCa and those receiving salvage therapies. The infrastructure developed through this highly integrated approach will create a new framework to rapidly evaluate and optimize new therapeutic strategies that will be adaptable to a broad array of metastatic tumors and molecular targets. Because molecular expressions and responses can be idiosyncratic, the proposed rapid monitoring of biomarker expression and treatment-induced biomarker changes creates the possibility of patient-customized treatments in the future. The platform will also impact scientific research by providing new investigative tools.

Public Health Relevance

The outcomes of the proposed studies will impact ovarian cancer patients with resistant disease by establishing tumor-targeted, co-delivery of cytotoxic agents and multiple inhibitors of interconnected, compensatory biological treatment resistance mechanisms. New minimally-invasive imaging tools are developed to inform patient-tailored treatments and for the visualization and eradication of small volume, microscopic disease beyond resectable macroscopic tumors. The approach developed here will be adaptable to treating a broad range of diseases.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Nanotechnology Study Section (NANO)
Program Officer
Tandon, Pushpa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Spring, Bryan Q; Abu-Yousif, Adnan O; Palanisami, Akilan et al. (2014) Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc Natl Acad Sci U S A 111:E933-42
Spring, Bryan Q; Palanisami, Akilan; Hasan, Tayyaba (2014) Microscale receiver operating characteristic analysis of micrometastasis recognition using activatable fluorescent probes indicates leukocyte imaging as a critical factor to enhance accuracy. J Biomed Opt 19:066006
Ghogare, Ashwini A; Rizvi, Imran; Hasan, Tayyaba et al. (2014) "Pointsource" delivery of a photosensitizer drug and singlet oxygen: eradication of glioma cells in vitro. Photochem Photobiol 90:1119-25
Rizvi, Imran; Anbil, Sriram; Alagic, Nermina et al. (2013) PDT dose parameters impact tumoricidal durability and cell death pathways in a 3D ovarian cancer model. Photochem Photobiol 89:942-52
Bartusik, Dorota; Aebisher, David; Ghogare, Ashwini et al. (2013) A fiberoptic (photodynamic therapy type) device with a photosensitizer and singlet oxygen delivery probe tip for ovarian cancer cell killing. Photochem Photobiol 89:936-41
Mir, Youssef; Elrington, Stefan A; Hasan, Tayyaba (2013) A new nanoconstruct for epidermal growth factor receptor-targeted photo-immunotherapy of ovarian cancer. Nanomedicine 9:1114-22
Abu-Yousif, Adnan O; Moor, Anne C E; Zheng, Xiang et al. (2012) Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett 321:120-7