The five year survival in ovarian cancer is very low, mostly because the disease is usually detected late, when the tumors have spread outside of the ovaries, in the peritoneal cavity. Delayed progress in the discovery and implementation of a more effective treatment is partly due to the paucity of preclinical models that recapitulate human disease and that can be used to develop and test new treatments. In this proposal we present one such mouse model and our plans to use it for learning more about the immunobiology and immunotherapy of ovarian cancer. Our recently developed transgenic mice express human mucin 1 (MUC1), a glycoprotein important in the development and therapy of ovarian cancer. More than 80% of all epithelial ovarian tumors overexpress MUC1, an oncoprotein involved in various signaling pathways, impacting cell survival through alterations of cell growth, proliferation and metastasis. MUC1 is also a tumor-associated antigen and a target for immune therapy and cancer vaccine development. By combining the MUC1 transgenic (Tg) mice with the previously reported LSLKrasG12D/+PtenloxP/loxP mice, we generated triple Tg MUC1+/-LSLKrasG12D/+PtenloxP/loxP (MUC1KrasPten), which develop MUC1+ ovarian tumors subsequent to Cre-encoding adenovirus (AdCre) injection in the mouse ovarian bursa. Our recent studies from triple Tg MUC1KrasPten mice showed that despite the histomorphologic similarities, there are several notable phenotypic differences between the ovarian tumors that develop in triple (MKP) and double (KP) transgenic mice: the MKP tumors are smaller at the primary (ovarian) site, generate more loco-regional metastases and show increased accumulation of immune suppressive T cells (Tregs). In addition, the tumors develop in a highly inflammatory environment, dominated by VEGF, COX2 overexpression and PGE2 accumulation. Based on these observations, we hypothesize that MUC1 accelerates loco-regional tumor growth and may link inflammation with ovarian tumor development. To test this hypothesis, we propose the following aims: 1.To define the mechanisms of MUC1 upregulation during ovarian tumor initiation and its consequences on EMT and tumor metastasis. 2. To evaluate MUC1 roles in loco-regional inflammation. 3. To test in vivo efficacy of MUC1-based vaccines. Our work combines in vivo testing of novel therapies, using a novel a highly versatile triple Tg animal model of ovarian cancer, with comprehensive in vitro examination of mechanistic pathways involved in cancer metastasis and loco-regional inflammation. Results from our studies may advance our understanding of the MUC1 oncogene in disease pathogenesis and provide the rationale for future immunotherapy trials in ovarian cancer.

Public Health Relevance

The five year survival in ovarian cancer is very low, mostly because the disease is usually detected late, when the tumors have spread outside of the ovaries, in the peritoneal cavity. Despite improvements in current treatments, which typically combine surgery and chemotherapy, the tumor invariably recurs and the patients succumb to loco-regional metastases. We focus here on an ovarian tumor-associated antigen and oncoprotein called mucin 1 (MUC1) and will test the hypothesis that MUC1 plays a key role in tumor metastasis and that MUC1-based vaccines may provide therapeutic benefit in ovarian cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
4R01CA163462-05
Application #
8997458
Study Section
Cancer Immunopathology and Immunotherapy Study Section (CII)
Program Officer
Yovandich, Jason L
Project Start
2012-03-01
Project End
2018-01-31
Budget Start
2016-02-01
Budget End
2018-01-31
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Magee-Women's Research Institute and Foundation
Department
Type
DUNS #
119132785
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Grabosch, Shannon; Bulatovic, Mirna; Zeng, Feitianzhi et al. (2018) Cisplatin-induced immune modulation in ovarian cancer mouse models with distinct inflammation profiles. Oncogene :
Budiu, Raluca A; Vlad, Anda M; Nazario, Linda et al. (2017) Restraint and Social Isolation Stressors Differentially Regulate Adaptive Immunity and Tumor Angiogenesis in a Breast Cancer Mouse Model. Cancer Clin Oncol 6:12-24
Zhang, L; Ma, T; Brozick, J et al. (2016) Effects of Kras activation and Pten deletion alone or in combination on MUC1 biology and epithelial-to-mesenchymal transition in ovarian cancer. Oncogene 35:5010-20
Ocak, Meltem; Gillman, Andrea G; Bresee, Jamee et al. (2015) Folate receptor-targeted multimodality imaging of ovarian cancer in a novel syngeneic mouse model. Mol Pharm 12:542-53
Mony, Jyothi Thyagabhavan; Zhang, Lixin; Ma, Tianzhou et al. (2015) Anti-PD-L1 prolongs survival and triggers T cell but not humoral anti-tumor immune responses in a human MUC1-expressing preclinical ovarian cancer model. Cancer Immunol Immunother 64:1095-108
Graw, Stefan; Meier, Richard; Minn, Kay et al. (2015) Robust gene expression and mutation analyses of RNA-sequencing of formalin-fixed diagnostic tumor samples. Sci Rep 5:12335
Parikh, Rahul A; Appleman, Leonard J; Bauman, Julie E et al. (2014) Upregulation of the ATR-CHEK1 pathway in oral squamous cell carcinomas. Genes Chromosomes Cancer 53:25-37
Suryawanshi, Swati; Huang, Xin; Elishaev, Esther et al. (2014) Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res 20:6163-74
Tirodkar, Tejas S; Budiu, Raluca A; Elishaev, Esther et al. (2014) MUC1 positive, Kras and Pten driven mouse gynecologic tumors replicate human tumors and vary in survival and nuclear grade based on anatomical location. PLoS One 9:e102409
Suryawanshi, Swati; Vlad, Anda M; Lin, Hui-Min et al. (2013) Plasma microRNAs as novel biomarkers for endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res 19:1213-24

Showing the most recent 10 out of 14 publications