Estrogen and its receptors are critical factors in the development, progression, metastasis and treatment of breast cancer. In addition to the classical nuclear estrogen receptors, ERalpha and ERbeta, the 7-transmembrane G protein-coupled estrogen receptor GPER is now recognized as mediating many of the rapid signaling events associated with estrogen action. Anti-estrogen therapies in the form of selective estrogen receptor modulators (SERMs, such as tamoxifen) and selective estrogen receptor down regulators (SERDs, such as Fulvestrant) have been highly successful in many ER-positive breast cancer patients;however, intrinsic and acquired resistance remains significant problems. Tamoxifen and Fulvestrant are agonists of GPER, suggesting that GPER may play a role in resistance to these drugs. We have identified both a selective agonist and antagonists of GPER that will allow us to test the hypothesis that GPER plays an important role in breast carcinogenesis and treatment efficacy.
Aim 1 will test whether GPER mediates cellular effects including proliferation, survival, transformation and migration in response to estrogen, anti-estrogens and GPER-selective ligands.
Aim 2 will test whether selective targeting of GPER activity modulates carcinogenesis and metastasis in a murine model of breast cancer.
Aim 3 will test whether selective activation and inhibition of GPER regulates proliferation and survival of cells in normal human breast tissue and human breast tumor explants. Significance: Completion of these aims will significantly advance our knowledge of and provide insight into the role of the novel estrogen receptor GPER in multiple aspects of breast cancer, from initiation to metastasis and drug resistance resulting in the identification of a novel therapeutic target for which highly selective antagonists exist. Further development of this antagonist could lead to a new drug for the treatment of GPER-expressing breast tumors.

Public Health Relevance

Estrogen and its receptors play important roles in breast cancer and are the targets of multiple therapies in breast cancer. Although often initially effective, resistance to drugs such as tamoxifen is a common problem. This study will determine the role of a novel estrogen receptor in breast cancer formation, progression and metastasis and test the ability of unique inhibitors of this receptor to prevent, cure or reduce the severity f this cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Sathyamoorthy, Neeraja
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of New Mexico Health Sciences Center
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Barton, Matthias; Prossnitz, Eric R (2017) Rapid vasodilation to raloxifene: role of oestrogen receptors and off-target effects. Br J Pharmacol 174:4201-4202
Meyer, Matthias R; Rosemann, Thomas; Barton, Matthias et al. (2017) GPER Mediates Functional Endothelial Aging in Renal Arteries. Pharmacology 100:188-193
Wagener, Brant M; Marjon, Nicole A; Prossnitz, Eric R (2016) Regulation of N-Formyl Peptide Receptor Signaling and Trafficking by Arrestin-Src Kinase Interaction. PLoS One 11:e0147442
Meyer, Matthias R; Fredette, Natalie C; Sharma, Geetanjali et al. (2016) GPER is required for the age-dependent upregulation of the myocardial endothelin system. Life Sci 159:61-65
Meyer, Matthias R; Fredette, Natalie C; Daniel, Christoph et al. (2016) Obligatory role for GPER in cardiovascular aging and disease. Sci Signal 9:ra105
Sharma, Geetanjali; Prossnitz, Eric R (2016) GPER/GPR30 Knockout Mice: Effects of GPER on Metabolism. Methods Mol Biol 1366:489-502
Prossnitz, Eric R; Arterburn, Jeffrey B (2015) International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 67:505-40
Meyer, Matthias R; Fredette, Natalie C; Barton, Matthias et al. (2015) Prostanoid-mediated contractions of the carotid artery become Nox2-independent with aging. Age (Dordr) 37:9806
Meyer, Matthias R; Fredette, Natalie C; Barton, Matthias et al. (2015) G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity. J Endocrinol 227:61-9
Zekas, Erin; Prossnitz, Eric R (2015) Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER. BMC Cancer 15:702

Showing the most recent 10 out of 24 publications