Radiotherapy remains a mainstay in cancer treatment yet many patients obtain no benefit in disease-free survival. The microenvironment, particularly via the tumor vasculature, exerts a major influence on cancer cell survival after radiotherapy. Recent work by our groups has exploited fluorescence imaging of a live-cell reporter of DNA double strand breaks (DSBs) to follow DSB formation after irradiation and the kinetics of damage repair or persistence. Here, we will examine radiation response in xenograft tumors in mice and dissect cross-talk between cancer cells and stroma. We plan to leverage complementary approaches developed in our laboratories to examine radiation response within the tumor microenvironment and then to examine the relationship between the heterogeneity of local events and overall response of tumors. Specifically, members of our group have pioneered use of 1) fluorescent DSB reporters to track DNA damage and repair in cancer cells within tumors, 2) transgenic nude mice with fluorescent stroma or vascular cells to track angiogenesis in tumors, 3) microarray analysis that can distinguish the gene expression patterns in the cancer and stromal cells, 4) advanced approaches to PET/MRI/CT and image integration to track tumor responses to targeted radiation, and 5) in vitro and computational modeling of determinants of tumor cell oxygenation and metabolism. By integrating these tools, we anticipate pursuing a multi-scale analysis and modeling of cellular proliferation vs. arrest, factoring in intrinsic determinants of DNA damage and repair and the effects of vascular geometry and angiogenesis at the level of microenvironment. We hope to project these events over time onto tumor size and metabolism on a gross level.

Public Health Relevance

Radiation therapy is a widely used treatment for cancer, but cures a minority of patients. One hypothesis is that inadequate blood flow in tumors protects some cells from radiation. This project will use advanced imaging methods to examine how radiation affects cancer cells in experimental tumors, and how this relates to blood flow. We will then apply systems biology approaches to begin to model how cancer cells survive radiation and how we might achieve better results.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA164492-01
Application #
8231949
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (O1))
Program Officer
Couch, Jennifer A
Project Start
2011-09-23
Project End
2016-07-31
Budget Start
2011-09-23
Budget End
2012-07-31
Support Year
1
Fiscal Year
2011
Total Cost
$983,936
Indirect Cost
Name
University of Chicago
Department
Genetics
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Quigley, Bryan P; Smith, Corey D; Cheng, Shih-Hsun et al. (2017) Sensitivity evaluation and selective plane imaging geometry for x-ray-induced luminescence imaging. Med Phys 44:5367-5377
Flor, Amy C; Wolfgeher, Don; Wu, Ding et al. (2017) A signature of enhanced lipid metabolism, lipid peroxidation and aldehyde stress in therapy-induced senescence. Cell Death Discov 3:17075
Appelbe, Oliver K; Moynihan, Kelly D; Flor, Amy et al. (2017) Radiation-enhanced delivery of systemically administered amphiphilic-CpG oligodeoxynucleotide. J Control Release 266:248-255
Appelbe, Oliver K; Kim, Bieong-Kil; Rymut, Nick et al. (2017) Radiation-enhanced delivery of plasmid DNA to tumors utilizing a novel PEI polyplex. Cancer Gene Ther :
Lee, Steve Seung-Young; Bindokas, Vytautas P; Kron, Stephen J (2017) Multiplex three-dimensional optical mapping of tumor immune microenvironment. Sci Rep 7:17031
Bhute, Vijesh J; Bao, Xiaoping; Palecek, Sean P (2017) Advances in Applications of Metabolomics in Pluripotent Stem Cell Research. Curr Opin Chem Eng 15:36-43
Gasa, L; Sanchez-Botet, A; Quandt, E et al. (2017) A systematic analysis of orphan cyclins reveals CNTD2 as a new oncogenic driver in lung cancer. Sci Rep 7:10228
Bhute, Vijesh J; Bao, Xiaoping; Dunn, Kaitlin K et al. (2017) Metabolomics Identifies Metabolic Markers of Maturation in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Theranostics 7:2078-2091
Efimova, Elena V; Ricco, Natalia; Labay, Edwardine et al. (2017) HMG-CoA reductase inhibition delays DNA repair and promotes senescence after tumor irradiation. Mol Cancer Ther :
Bhute, Vijesh J; Ma, Yan; Bao, Xiaoping et al. (2016) The Poly (ADP-Ribose) Polymerase Inhibitor Veliparib and Radiation Cause Significant Cell Line Dependent Metabolic Changes in Breast Cancer Cells. Sci Rep 6:36061

Showing the most recent 10 out of 38 publications