Increased polyamine synthesis and inflammation are associated with intraepithelial neoplasia, which are risk factors for various types of cancer development in humans. Ornithine decarboxylase (ODC) is highly expressed in many cancer cell types and promotes growth and tumor formation. Elevated ODC activity in carcinogenesis model systems and neoplastic tissues suggests that this enzyme is a valid target for chemoprevention. Difluoromethylornithine (DFMO) is an approved FDA drug that acts as an irreversible and specific ODC inhibitor, and reportedly prevents carcinogenesis, especially in the skin and colon. However, high doses of DFMO in humans are associated with various degrees of hearing loss. By using computational biology with the BlueGene/L supercomputer, we have found at least one small molecule allosteric inhibitor of ODC that is less toxic and more potent than DFMO in suppressing skin and colon carcinogenesis. In this application, we propose to use state of the art technologies to identify and test additional novel, nontoxic small molecule inhibitors of ODC. These approaches include determining binding, binding affinities, specific binding sites and resulting structural changes by computation simulation using the BlueGene/L Supercomputer and our newly acquired GPU system, and performing protein binding assays, cell transformation assays and in vivo animal experiments, including the 2-stage mouse skin carcinogenesis model and the APCmin mouse model. Through these studies, we will develop more effective agents targeting ODC with fewer side effects for the chemoprevention of skin cancer and colon cancer.

Public Health Relevance

Ornithine decarboxylase (ODC) is an enzyme that highly expressed in many cancer cell types and promotes growth and tumor formation. Difluoromethylornithine (DFMO) is an approved FDA drug that acts as an irreversible and specific ODC inhibitor and appears to prevent skin and colon. However, high doses of DFMO in humans cause hearing loss. Thus identifying new potent, nontoxic ODC inhibitors is extremely important.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA166011-02
Application #
8596803
Study Section
Chemo/Dietary Prevention Study Section (CDP)
Program Officer
Perloff, Marjorie
Project Start
2013-01-01
Project End
2017-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
2
Fiscal Year
2014
Total Cost
$284,794
Indirect Cost
$98,044
Name
University of Minnesota Twin Cities
Department
Type
Organized Research Units
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Bode, Ann M; Dong, Zigang; Wang, Hongyang (2016) Cancer prevention and control: alarming challenges in China. Natl Sci Rev 3:117-127
Peng, C; Zeng, W; Su, J et al. (2016) Cyclin-dependent kinase 2 (CDK2) is a key mediator for EGF-induced cell transformation mediated through the ELK4/c-Fos signaling pathway. Oncogene 35:1170-9
Kim, Dong Joon; Roh, Eunmiri; Lee, Mee-Hyun et al. (2016) Herbacetin Is a Novel Allosteric Inhibitor of Ornithine Decarboxylase with Antitumor Activity. Cancer Res 76:1146-57
Lim, Do Young; Shin, Seung Ho; Lee, Mee-Hyun et al. (2016) A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer. Oncotarget 7:35001-14
Sheng, Yuqiao; Liu, Kangdong; Wu, Qiong et al. (2016) PPMP, a novel tubulin-depolymerizing agent against esophageal cancer in patient-derived tumor xenografts. Oncotarget 7:30977-89
Kim, J-E; Roh, E; Lee, M H et al. (2016) Fyn is a redox sensor involved in solar ultraviolet light-induced signal transduction in skin carcinogenesis. Oncogene 35:4091-101
Kim, Jong-Eun; Kim, Jae Hwan; Lee, Younghyun et al. (2016) Bakuchiol suppresses proliferation of skin cancer cells by directly targeting Hck, Blk, and p38 MAP kinase. Oncotarget 7:14616-27
Liu, Kangdong; Park, Chanmi; Chen, Hanyong et al. (2015) Eupafolin suppresses prostate cancer by targeting phosphatidylinositol 3-kinase-mediated Akt signaling. Mol Carcinog 54:751-60
Zhang, C; Liu, K; Yao, K et al. (2015) HOI-02 induces apoptosis and G2-M arrest in esophageal cancer mediated by ROS. Cell Death Dis 6:e1912
Li, Haitao; Liu, Kangdong; Boardman, Lisa A et al. (2015) Circulating Prostaglandin Biosynthesis in Colorectal Cancer and Potential Clinical Significance. EBioMedicine 2:165-171

Showing the most recent 10 out of 30 publications