Given the pivotal role of anti-apoptotic Bcl-2 family proteins in cancer cell survival, development of anti-cancer therapeutics targeting the BH3 binding groove of anti-apoptotic Bcl-2 proteins has emerged as a promising, but difficult goal. Initial compounds targeted to the structure of Bcl-xL, and thereby able to bind to Bcl-2, Bcl-xL and Bcl-W, have shown promise in the clinic for the treatment of cancer, though studies have discovered that Mcl-1 over-expression allows cancers to evade treatment. To this end, the recent success with stable and cell permeable stapled BH3 peptides targeting Bcl-2 has provided the impetus to identify peptide sequences capable of selectively binding to Mcl-1 which is one major Aim of this proposal. If successful, our studies could result in advanced clinical candidates for the treatment of cancer. To test our hypotheses we will characterize and further determine the structural basis for inhibition, and subsequently we will test the potential anti-cancer activity of the proposed compounds in advanced pharmacological studies in cell and mice models of prostate cancer.

Public Health Relevance

Our studies are aimed at the identification of natural peptide sequences that target selectively an anti-apoptotic protein, Mcl-1, responsible for the onset of progression of most solid tumors. We will first characterize at the molecular level the structural basis for inhibition of Mcl-1, and subsequently we will test the potential anti- cancer activity of the proposed compounds in advanced pharmacological studies in cell and mice models of prostate cancer.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01CA168517-03
Application #
8659353
Study Section
Macromolecular Structure and Function C Study Section (MSFC)
Program Officer
Arya, Suresh
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Menezes, Mitchell E; Das, Swadesh K; Emdad, Luni et al. (2014) Genetically engineered mice as experimental tools to dissect the critical events in breast cancer. Adv Cancer Res 121:331-82
Barile, Elisa; Pellecchia, Maurizio (2014) NMR-based approaches for the identification and optimization of inhibitors of protein-protein interactions. Chem Rev 114:4749-63
Pal, I; Sarkar, S; Rajput, S et al. (2014) BI-69A11 enhances susceptibility of colon cancer cells to mda-7/IL-24-induced growth inhibition by targeting Akt. Br J Cancer 111:101-11
Menezes, Mitchell E; Bhatia, Shilpa; Bhoopathi, Praveen et al. (2014) MDA-7/IL-24: multifunctional cancer killing cytokine. Adv Exp Med Biol 818:127-53
Bhatia, Shilpa; Emdad, Luni; Das, Swadesh K et al. (2014) Non-BRAF targeted therapies for melanoma: protein kinase inhibitors in Phase II clinical trials. Expert Opin Investig Drugs 23:489-500
Barile, Elisa; Wang, Si; Das, Swadesh K et al. (2014) Design, synthesis and bioevaluation of an EphA2 receptor-based targeted delivery system. ChemMedChem 9:1403-12
Thomas, Shibu; Quinn, Bridget A; Das, Swadesh K et al. (2013) Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 17:61-75