This proposal is being submitted as a companion grant to our application 2R01 CA109106 which was reviewed by the BMIT-B Study Section in June 2011 and awarded a priority score of 12 (2nd percentile) with no recommended budget cuts. Our overall aims are to continue the development, evaluation and validation of a novel magnetic resonance imaging (MRI) technique that is a sensitive indicator of tumor status, before and after treatment, and which provides unique information non-invasively on tissue microstructure. Grant CA109106 was subsequently awarded with a 62% budget reduction compared to what the Study Section recommended. The work being performed with that grant has therefore been amended and substantially reduced in scope, and it no longer will support most of the animal studies or comparisons of treatment effects that were proposed and approved. This proposal aims to secure supplementary support for those studies that were approved but not funded, and which we (and the Study Section) consider essential as part of our evaluation of this new methodology. Previous studies have convincingly shown that diffusion weighted MRI (DW-MRI) can report on changes in tumors during growth and following treatment. However, detectable changes occur only after a critical time has elapsed, when cell density has altered sufficiently, and conventional DW-MRI is not sensitive to earlier or more subtle changes within cells. We have developed an alternative technique, oscillating gradient spin-echo (OGSE) DW-MRI, which is uniquely sensitive to microstructural features much smaller than a cell which restrict the free diffusion of tissue water. OGSE measurements may be sensitized selectively to features of different sizes, they appear to be able to detect changes within cells before there are changes in cell density, and they provide a new type of spectral data which can be analyzed to obtain quantitative structural information. We have shown that OGSE imaging reveals greater heterogeneity within tumors, and at higher contrast, that it is sensitive to intra-cellular features such as nuclear size, and that it seems more sensitive to earlier changes in tumors following treatment. We propose to apply optimized OGSE methods to measure changes that occur with the growth of tumors, and in response to three different classes of targeted treatments, in mouse models in vivo. We will establish how early OGSE methods can detect the response of tumors to treatments, how well these changes predict later outcomes, and which OGSE parameters correlate with changes in cellularity, apoptosis and proliferation. The OGSE data will be correlated with co-registered quantitative histological and immunohistochemical sections of the same tumor to verify the interpretation of the measurements. We will also further assist the interpretation of OGSE data by performing elaborate computer simulations of water in compartmental systems of appropriate complexity. Our overall aim is to validate OGSE methods as an experimental tool for pre-clinical studies of tumors.

Public Health Relevance

Reliable and sensitive methods for assessing the response of tumors to treatments are critical for the successful management of cancer and as investigational tools in pre-clinical research, but at present our ability to detect early response and predict the outcome of targeted treatments is poor. Repeatable, quantitative, non-invasive imaging methods which can reliably assess tumor response would aid the development of new treatments. The research proposed would provide a new MRI technique for non- invasive imaging of tumors which can be used to detect and assess their response to treatment sooner and more accurately than current methods, and which promises to become a useful tool in preclinical research and provide insights into how better to use and interpret current imaging methods.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA173593-02
Application #
8596806
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Zhang, Huiming
Project Start
2012-12-15
Project End
2017-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
2
Fiscal Year
2014
Total Cost
$233,064
Indirect Cost
$83,664
Name
Vanderbilt University Medical Center
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Xu, Junzhong; Zaiss, Moritz; Zu, Zhongliang et al. (2014) On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4?T. NMR Biomed 27:406-16
Li, Hua; Gore, John C; Xu, Junzhong (2014) Fast and robust measurement of microstructural dimensions using temporal diffusion spectroscopy. J Magn Reson 242:4-9
Xu, Junzhong; Li, Hua; Harkins, Kevin D et al. (2014) Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy. Neuroimage 103:10-9
Zu, Zhongliang; Spear, John; Li, Hua et al. (2014) Measurement of regional cerebral glucose uptake by magnetic resonance spin-lock imaging. Magn Reson Imaging 32:1078-84
Spear, John T; Gore, John C (2014) Effects of diffusion in magnetically inhomogeneous media on rotating frame spin-lattice relaxation. J Magn Reson 249C:80-87
Xu, Junzhong; Li, Ke; Zu, Zhongliang et al. (2014) Quantitative magnetization transfer imaging of rodent glioma using selective inversion recovery. NMR Biomed 27:253-60