Solid tumors will not grow beyond 3 - 4 mm in diameter without building up their own blood supply. Due to the essential role of tumor angiogenesis, anti-angiogenesis, mono-therapy or in- combination with other therapeutic agents, represents a very promising approach for cancer treatments. Great successes have been achieved, such as Avastin, a FDA approved anti- angiogenesis drug. However, clinical studies revealed that the cancer patient survival benefits of antiangiogenic drugs have thus far been insignificant. In addition, most current studies in development of anti-angiogenesis agent have been mainly focused on strategies of blocking VEGF/VEGFR signaling. Many agents that are developed against the VEGF/VEGFR pathway often cause unwanted biologic side effects. There is urgent need to develop anti-angiogenesis agents by targeting many other biological pathways that are involved in both stimulation and inhibition of cancer angiogenesis. We have developed a new class of anti-angiogenesis proteins by integrin ?v?3 at a novel site, the large pocket formed by the I-domain of ?v and the PSI domain of ?3. Computational modeling demonstrated that the domain 1 of rat CD2 and human CD2 spatially fit into the designed site very well. Mutations introduced at the D1-CD2 to bridge several key contacts between designed protein and the integrins optimize the binding of the designed protein with integrin. The designed proteins exhibit strong in vitro activity in induction of apoptosis on endothelial HUVEC cells with no effects on other cells. Tests with tumor nude mice PC-3 xenografts show that the designed proteins strongly inhibit tumor growth. Parallel analyses suggested that our developed protein anti-angiogenesis agents are significantly more effective than Avastin in inhibiting tumor growth. In this proposed research project, we propose experiments to further verify whether the designed protein indeed interact with integrin at the designed site, and whether the designed protein indeed exert its activity by targeting the integrin. We will extensively test the effectiveness of the developed protein anti-angiogenesis agents by various animal models of human cancers. We also design experiments to test whether our developed anti-angiogenesis proteins will have great potency for cancer treatment in combination with other anti-cancer drugs. To facilitate potential future clinical applications, we propose experiments to extensively characterize toxicity and bio-distribution of the protein agents. Our study will lead to development of a new and more effective anti-angigenesis agent for cancer treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA175112-04
Application #
9238744
Study Section
Special Emphasis Panel (ZRG1-BMCT-C (01)S)
Program Officer
Forry, Suzanne L
Project Start
2014-04-01
Project End
2019-02-28
Budget Start
2017-03-01
Budget End
2018-02-28
Support Year
4
Fiscal Year
2017
Total Cost
$353,781
Indirect Cost
$102,106
Name
Georgia State University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
837322494
City
Atlanta
State
GA
Country
United States
Zip Code
30302
Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J et al. (2016) Rational design of a protein that binds integrin ?v?3 outside the ligand binding site. Nat Commun 7:11675
Zhang, Yinwei; Li, Liangwei; Liu, Yuan et al. (2016) PKM2 released by neutrophils at wound site facilitates early wound healing by promoting angiogenesis. Wound Repair Regen 24:328-36