Breast cancer is a heterogeneous disease comprised of at least 5 major tumor subtypes that coalesce as the 2nd leading cause of cancer death in women in the United States. Amongst individual breast cancer subtypes, those classified as being triple-negative breast cancers (TNBCs) are clinically unique via their presentation of aggressive and metastatic phenotypes, and their high propensity to recur rapidly following conventional chemotherapy treatment. TNBCs are also noteworthy by their failure to express hormone receptors (estrogen and progesterone) and ErbB2/HER2, a phenotype that renders targeted chemotherapies (e.g., hormonal or HER2-directed) ineffective and contributes to the poor prognosis of TNBC patients. Although our understanding of the molecular features and clinical manifestations of TNBCs has increased in recent years, science and medicine still lack sufficient knowledge of TNBC development and metastasis to permit the synthesis of chemotherapies capable of specifically targeting and alleviating this aggressive breast cancer subtype. c-Abl is a ubiquitously expressed nonreceptor protein tyrosine kinase that governs cell proliferation, migration, and adhesion, as well as that of cell survival. Additionally, c-Abl can function as a suppressor or promoter of tumorigenesis in a cell- and context-specific manner. Importantly, we showed that the enforced expression of a constitutively-active c-Abl mutant (CST-Abl) alleviated TNBC development and metastasis in mice, doing so by inducing TNBCs to undergo mesenchymal-epithelial transition programs coupled to elevated p21 expression, and to diminished expression of matrix metalloproteinases. Along these lines, we recently observed TNBC tumorigenicity to be inversely related to c-Abl expression levels, which also predicts for TNBC response to docetaxel. Likewise, we discovered that the ancient Chinese herb Securinine exhibits potent cytotoxic activity against TNBCs propagated in 3D-organotypic cultures. Based on these and other preliminary findings, we hypothesize that measures capable of promoting c-Abl expression and activation will alleviate TNBC development and metastatic progression. These hypotheses will be addressed by four Specific Aims.
Aim 1 will determine the role for oncogenic TGF- signaling and mechanotransduction to inactivate the tumor suppressing functions of c-Abl in TNBCs. We will manipulate, both positively and negatively, the expression of 1 and 3 integrins and their effectors to gauge their function in driving c-Abl inactivation during specific stages of TNBC development and metastatic progression. Likewise, the validity of these molecular changes will be assessed using a human breast tissue microarray.
Aim 2 will determine the role for p53 members in mediating tumor suppression by c-Abl in TNBCs, and in other non-TNBC subtypes. Additionally, the effectiveness of a novel allosteric c-Abl activator, DPH, to eradicate TNBCs will be assessed using in vitro and in vivo models of TNBC tumor development.
Aim 3 will determine the value of c-Abl to predict TNBC response to docetaxel. We will manipulate c-Abl expression in human and murine TNBC cell lines, whose survival following docetaxel treatment will be assessed both in vitro and in vivo. Likewise, we will perform a retrospective study on annotated clinical specimens to validate c-Abl expression as a predictive biomarker for TNBC response to docetaxel. Lastly, Aim 4 will determine the therapeutic effectiveness of Securinine to eradicate TNBCs. Here we will manipulate the expression of c-Abl and p53 family members in late-stage TNBCs, whose survival when treated with Securinine, docetaxel, and TNBC standard-of-care agents will be determined and compared. Collectively, the findings obtained in this innovation application will provide novel molecular insights into how c-Abl suppresses TNBC tumorigenicity; they will also generate innovative translational outcomes in the form of novel biomarkers (e.g., c-Abl for docetaxel response) and treatment options (e.g., Securinine and DPH) for TNBCs.

Public Health Relevance

Triple-negative breast cancers (TNBCs) are an unusually aggressive and metastatic subtype of breast cancer that also exhibit rapid rates of recurrence. Thus, TNBC patients have a poor prognosis as compared to individuals harboring non-TNBC tumors. We previously established c-Abl as a novel suppressor of TNBC development and metastatic progression, doing so by inhibiting their acquisition of EMT, invasive, and metastatic phenotypes. More recently, we have shown that c-Abl activation overrides the tumor promoting properties of mechanotransduction, as well as induces senescent programs in TNBC tumors produced in mice. Finally, we have associated c-Abl expression with the response of TNBCs to docetaxel, and have identified the ancient Chinese herb Securinine as a potent cytotoxic agent against dormant and metastatic TNBCs. Our proposed studies are highly innovative and translational and will determine (i) the extent to which oncogenic TGF-? signaling and mechanotransduction inactivate the tumor suppressing functions of c-Abl; (ii) whether the novel small molecule c-Abl activator DPH can suppress TNBC development and metastasis; (iii) the relative contribution of p53 family members in mediating the tumor suppressing activities of c-Abl; (iv) whether c-Abl expression differentiates TNBC patients that are responsive to docetaxel from those that unresponsive to this chemotherapy; and (v) whether Securinine potently kills TNBC tumors in preclinical mouse models of TNBC development and metastatic progression. Collectively, this application will not only provide novel mechanistic insights into how c-Abl suppresses TNBC metastasis, but will also deliver two major translational advancements by (a) establishing c-Abl as the first predictive biomarker capable of differentiating TNBC patients into docetaxel responders and nonresponders, and (b) illustrating the specific cytotoxic activity of Securinine against developing and disseminated TNBCs.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA177069-03
Application #
8827300
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Ault, Grace S
Project Start
2013-05-14
Project End
2018-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
3
Fiscal Year
2015
Total Cost
$328,265
Indirect Cost
$109,249
Name
Case Western Reserve University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Tian, Maozhen; Schiemann, William P (2017) TGF-? Stimulation of EMT Programs Elicits Non-genomic ER-? Activity and Anti-estrogen Resistance in Breast Cancer Cells. J Cancer Metastasis Treat 3:150-160
Morrison, Chevaun D; Chang, Jenny C; Keri, Ruth A et al. (2017) Mutant p53 dictates the oncogenic activity of c-Abl in triple-negative breast cancers. Cell Death Dis 8:e2899
Gollamudi, Jahnavi; Parvani, Jenny G; Schiemann, William P et al. (2016) Neoadjuvant therapy for early-stage breast cancer: the clinical utility of pertuzumab. Cancer Manag Res 8:21-31
Gooding, Alex J; Schiemann, William P (2016) Harnessing protein kinase A activation to induce mesenchymal-epithelial programs to eliminate chemoresistant, tumor-initiating breast cancer cells. Transl Cancer Res 5:S226-S232
Morrison, Chevaun D; Allington, Tressa M; Thompson, Cheryl L et al. (2016) c-Abl inhibits breast cancer tumorigenesis through reactivation of p53-mediated p21 expression. Oncotarget 7:72777-72794
Robinson, Nathaniel J; Schiemann, William P (2016) Means to the ends: The role of telomeres and telomere processing machinery in metastasis. Biochim Biophys Acta 1866:320-329
Wendt, Michael K; Williams, Whitney K; Pascuzzi, Pete E et al. (2015) The antitumorigenic function of EGFR in metastatic breast cancer is regulated by expression of Mig6. Neoplasia 17:124-33
Morrison, Chevaun D; Schiemann, William P (2015) Tipping the balance between good and evil: aberrant 14-3-3? expression drives oncogenic TGF-? signaling in metastatic breast cancers. Breast Cancer Res 17:92
Parvani, Jenny G; Davuluri, Gangarao; Wendt, Michael K et al. (2015) Deptor enhances triple-negative breast cancer metastasis and chemoresistance through coupling to survivin expression. Neoplasia 17:317-28
Parvani, Jenny G; Gujrati, Maneesh D; Mack, Margaret A et al. (2015) Silencing ?3 Integrin by Targeted ECO/siRNA Nanoparticles Inhibits EMT and Metastasis of Triple-Negative Breast Cancer. Cancer Res 75:2316-2325

Showing the most recent 10 out of 18 publications