The introduction of imatinib in 2001 made chronic myeloid leukemia (CML) a manageable disease for many patients. Tyrosine kinase inhibitors (TKIs), including imatinib, nilotinib, and dasatinib, are now routine therapy for patients with CML These inhibitors bind the kinase domain of BCR-ABL1, the fusion protein that is the molecular cause of CML. However, for some patients, BCR-ABL1 mutations lead to TKI-resistance and progressive disease. Our recent characterization of a new TKI, ponatinib, led to successful clinical trials to evaluate its efficacy for TKI-resistant CML. The key to ponatinib's success is is ability to kill cells with mutated BCR-ABL1. Unfortunately, for some patients, ponatinib therapy is only transiently effective due to onset of resistance. Analysis of pre- and post-ponatinib treatment samples suggests two mechanisms of ponatinib resistance: (1) two or more mutations per BCR-ABL1 molecule that prevent ponatinib binding and (2) survival despite non-mutated, inhibited BCR-ABL1 due to activation of alternative pro-survival/anti-programmed cell death pathways.
Aim 1 : Determine the role of BCR-ABL1 compound mutations in resistance to ponatinib and identify strategies to restore BCR-ABL1 inhibition. This information will enable clinicians to make confident treatment decisions starting at diagnosis. Sequencing the kinase domain before and during ponatinib treatment with the most advanced technology will allow for a more complete understanding of the complex leukemia population and provide further information about the role of mutations in TKI resistance.
Aim 2 : Identify alternative oncogenic pathways in primary CML specimens exhibiting resistance to ponatinib despite sustained inhibition of BCR-ABL1. TKI resistance is documented in patients whose BCR- ABL1 is not mutated, indicating anomalous activation of an endogenous survival pathway. To uncover these pathways and explore their suitability as therapeutic targets, we will screen patient samples using kinase inhibitor and siRNA libraries in conjunction with ponatinib. This will provide information about the mechanism of survival of each individual patient's leukemia and will begin building a road toward personalized therapy for TKI-resistant CML.
Aim 3 : Target STAT3 in TKI-resistant CML. Preliminary studies with TKI-resistant cell lines indicate STAT3 as a downstream integrator of aberrant signaling pathways in the setting of TKI resistance. We are working with a team of chemists to develop increasingly specific and active STAT3 inhibitors. We have innovated a rapid and robust luciferase screen that has already delivered the best known STAT3 inhibitors to the forefront of CML research. In summary, BCR-ABL1 compound mutations and alternative pathway activation are the sources of unmet clinical challenges in CML treatment and we propose a platform to design and implement new strategies to overcome both resistance mechanisms. Data from these studies will be critical for treating TKI-resistant CML patients and will impact therapy for many other drug resistant cancers.

Public Health Relevance

Chronic myeloid leukemia (CML) was abruptly converted in 2001 from a fatal blood cancer to a manageable disorder by the introduction of 'magic bullet' drugs that target BCR-ABL1 kinase, the molecular cause of CML. However, some patients with CML encounter treatment failure due to: (1) BCR-ABL1 mutations that prevent drug binding or (2) resistance despite inhibition of BCR-ABL1, caused by activation of alternative signaling pathways. The proposed studies focus on developing strategies to predict and overcome drug resistance in treatment refractory CML. These findings will improve the use of targeted therapies in CML and many other cancers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA178397-05
Application #
9487172
Study Section
Basic Mechanisms of Cancer Therapeutics Study Section (BMCT)
Program Officer
Forry, Suzanne L
Project Start
2014-06-01
Project End
2019-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Utah
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Zabriskie, Matthew S; Antelope, Orlando; Verma, Anupam R et al. (2018) A novel AGGF1-PDGFRb fusion in pediatric T-cell acute lymphoblastic leukemia. Haematologica 103:e87-e91
Patel, Ami B; Lange, Thoralf; Pomicter, Anthony D et al. (2018) Similar expression profiles in CD34+ cells from chronic phase chronic myeloid leukemia patients with and without deep molecular responses to nilotinib. Oncotarget 9:17889-17894
Kovacsovics, Tibor J; Mims, Alice; Salama, Mohamed E et al. (2018) Combination of the low anticoagulant heparin CX-01 with chemotherapy for the treatment of acute myeloid leukemia. Blood Adv 2:381-389
Tharkar-Promod, S; Johnson, D P; Bennett, S E et al. (2018) HDAC1,2 inhibition and doxorubicin impair Mre11-dependent DNA repair and DISC to override BCR-ABL1-driven DSB repair in Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia. Leukemia 32:49-60
Yan, Dongqing; Pomicter, Anthony D; Tantravahi, Srinivas et al. (2018) Nuclear-cytoplasmic transport is a therapeutic target in myelofibrosis. Clin Cancer Res :
Than, Hein; Qiao, Yi; Huang, Xiaomeng et al. (2018) Ongoing clonal evolution in chronic myelomonocytic leukemia on hypomethylating agents: a computational perspective. Leukemia 32:2049-2054
Carey, Alyssa; Edwards 5th, David K; Eide, Christopher A et al. (2017) Identification of Interleukin-1 by Functional Screening as a Key Mediator of Cellular Expansion and Disease Progression in Acute Myeloid Leukemia. Cell Rep 18:3204-3218
Deininger, Michael W N; Tyner, Jeffrey W; Solary, Eric (2017) Turning the tide in myelodysplastic/myeloproliferative neoplasms. Nat Rev Cancer 17:425-440
Kurtz, Stephen E; Eide, Christopher A; Kaempf, Andy et al. (2017) Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies. Proc Natl Acad Sci U S A 114:E7554-E7563
Patel, Ami B; O'Hare, Thomas; Deininger, Michael W (2017) Mechanisms of Resistance to ABL Kinase Inhibition in Chronic Myeloid Leukemia and theĀ Development of Next Generation ABL Kinase Inhibitors. Hematol Oncol Clin North Am 31:589-612

Showing the most recent 10 out of 39 publications