PQD1: Clonal heterogeneity and targeted therapy resistance in melanoma. Molecular instability of cancer cells generates diversity that, in turn, enables tumor evolution. A strong selective pressure from targeted therapies can provide dramatic clinical responses but also drive such evolution to yield rapid drug resistant tumor growth. To effectively address this key challenge of modern day oncology, it is imperative to better understand the basic mechanisms underlying evolution of resistance in patients in vivo. We hypothesize that development of clinical resistance to targeted therapy in advanced cancers is a function of marked tumor heterogeneity and clonal selection rather than cellular adaptation to therapeutic pressure. Our proposal will test this hypothesis using targeted inhibition of oncogenic BRAF in melanoma as a model system. To achieve this we will employ a highly innovative approach that combines flow cytometry-based sorting of tumor nuclei directly from solid tumor archived paraffin-embedded clinical samples with next generation sequencing, providing a unique opportunity to exploit the extensive Mayo Clinic resources of archived clinically annotated melanoma tissues. Genomic sequence data obtained in these experiments from distinct clonal tumor populations sorted from a series of patient matched sensitive and resistant tissues will be used to define clonal tumor lineages and respective molecular events associated with resistance. We will also leverage the novel and robust informatics resources of our Stand Up To Cancer (SU2C) Melanoma Dream Team effort for clinically relevant interpretation of genomic data in this proposal. Finally, we will explore approaches to modulate development of resistance arising in patients in vivo in a unique, highly clinically relevant anima model system. Using tumorgrafts derived from patient's matched pre-treatment (sensitive) and relapsed (resistant) tissues, we will test the effects of altering drug dose and timing and explore rational combination treatments based on genomic data from paired tissues. The key issue addressed in this proposal holds relevance not only to melanoma but solid tumors in general. The outcomes of our proposed research have potential to significantly impact our understanding of drug resistance and the development of clinically relevant approaches to overcome it, which is of particular relevance as numerous targeted agents are reaching the clinic.

Public Health Relevance

Frequent development of therapeutic resistance to rapidly emerging and otherwise highly effective targeted therapies represents a central challenge in modern day oncology. We hypothesize that development of clinical resistance to targeted therapy in advanced cancers is a function of marked tumor heterogeneity and clonal selection rather than cellular adaptation to therapeutic pressure. Our application proposes a series of experiments that will test this concept directly in patient samples in vivo using an innovative combination of flow cytometry and next generation sequencing and will then explore approaches to modulate development of resistance in a unique, highly clinically relevant animal model system.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA185072-03
Application #
9129627
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Forry, Suzanne L
Project Start
2014-08-11
Project End
2018-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Mayo Clinic, Arizona
Department
Type
DUNS #
153665211
City
Scottsdale
State
AZ
Country
United States
Zip Code
85259