Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease and new therapies are desperately needed. Our previous work has shown that PDAC have an altered metabolism and that oncogenic Kras plays a key role in this metabolic reprogramming. Importantly, we have identified a novel, glutamine (Gln) -dependent pathway that is necessary for PDAC growth through the generation of NADPH for the maintenance of redox balance (referred to as the Gln-redox pathway). This pathway is dependent on oncogenic Kras and is absolutely essential for PDAC growth both in vitro and in vivo, while being dispensable in normal cells. Thus, there may be an accessible therapeutic window. We have shown that oncogenic Kras controls flux through the Gln-redox pathway by regulating the relative expression of two key metabolic enzymes; GOT1 and GLUD1, thereby promoting the transamination of Gln-derived aspartate by GOT1 and repressing the canonical conversion of glutamate to alpha-ketoglutarate by GLUD1. Ultimately, NADPH and pyruvate are produced by malic enzyme (ME1). Additionally, our data demonstrate that the overwhelming majority of Gln- derived pyruvate produced by ME1 is not converted to lactate via lactate dehydrogenase. Specifically the isotopomer analyses suggest that this pool of pyruvate is directly tunneled into the mitochondria where it can be acted upon by pyruvate carboxylase (PC). Together, this supports the idea that a complex exists between ME1, the mitochondrial pyruvate transporter (MPC1/2), and possibly PC. Consistent with this concept, we have shown that suppression of either MPC1 or PC results in a significant accumulation of fully labeled aspartate in Gln tracing studies, suggesting that the Gln-redox pathway has been inhibited. Against this backdrop, we propose a series of in-depth, mechanistic studies to elucidate: i) the regulation of the pathway by oncogenic Kras; ii) the integration of this pathway with other ROS scavenging pathways in PDAC; iii) the metabolic fate of the pyruvate end product, and iv) the impact of the PDAC microenvironment in vivo on this unique Gln metabolism. Given the difficulties in developing inhibitors to Kras, targeting Kras-regulated metabolic pathways that are required for growth may provide novel entry points of attack in this devastating cancer. Thus, a complete understanding of this novel Gln-redox pathway will be critical to translate these findings to the clinic. SA1. T explore the regulation of glutamine metabolism and redox balance by oncogenic Kras. SA2. To investigate the fate of malic enzyme derived pyruvate in PDAC glutamine metabolism. SA3. To explore how the PDAC microenvironment impacts glutamine metabolism and redox balance in vivo under basal and stress conditions.

Public Health Relevance

This proposal seeks to build on data from my laboratory showing that oncogenic Kras can reprogram glutamine metabolism in pancreatic cancer. Pancreatic cancer is highly lethal and current treatments such as chemotherapy and radiation are only minimally effective due to its profound therapeutic resistance. The results of these studies may have an important impact on the treatment of this disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA188048-01A1
Application #
8957614
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Espey, Michael G
Project Start
2015-05-05
Project End
2020-04-30
Budget Start
2015-05-05
Budget End
2016-04-30
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
Biancur, Douglas E; Paulo, Joao A; Ma?achowska, Beata et al. (2017) Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat Commun 8:15965
Lyssiotis, Costas A; Kimmelman, Alec C (2017) Metabolic Interactions in the Tumor Microenvironment. Trends Cell Biol 27:863-875
Sherman, Mara H; Yu, Ruth T; Tseng, Tiffany W et al. (2017) Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc Natl Acad Sci U S A 114:1129-1134
Kimmelman, Alec C; White, Eileen (2017) Autophagy and Tumor Metabolism. Cell Metab 25:1037-1043
Sousa, Cristov√£o M; Biancur, Douglas E; Wang, Xiaoxu et al. (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536:479-83
Amaravadi, Ravi; Kimmelman, Alec C; White, Eileen (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30:1913-30
Herter-Sprie, Grit S; Koyama, Shohei; Korideck, Houari et al. (2016) Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight 1:e87415
Mancias, Joseph D; Kimmelman, Alec C (2016) Mechanisms of Selective Autophagy in Normal Physiology and Cancer. J Mol Biol 428:1659-80
Ying, Haoqiang; Dey, Prasenjit; Yao, Wantong et al. (2016) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 30:355-85
Kimmelman, Alec C (2015) Metabolic Dependencies in RAS-Driven Cancers. Clin Cancer Res 21:1828-34

Showing the most recent 10 out of 11 publications