Our long-term research goal is to develop novel therapies against chemotherapy resistance in multiple myeloma (MM). The goal of the proposed project, which is to elucidate the way in which chemotherapy resistance is maintained in MM cells, is essential to attaining our long-term research goal because it will provide an improved understanding of the mechanisms that could be therapeutically targeted to reduce or prevent chemotherapy resistance in this disease. Our preliminary studies revealed that adipocytes (ADs) are a dominant type of bone marrow (BM) stromal cells (BMSCs) in the BM of MM patients. These studies showed for the first time that the BM of patients with relapsed MM contained remarkably more ADs than the BM of patients with non-relapsed disease did and that MM cells surround and contact ADs. We found that co-culture with ADs protected MM cells against chemotherapy-induced apoptosis and that the AD-secreted adipokine chemerin is a novel factor that mediates ADs' protection of MM cells against chemotherapy. In addition, co-culture with MM cells enhanced AD formation and ADs' production of chemerin, and the addition of an antibody against the Wnt inhibitor dickkopf-1 (DKK-1) abrogated such effects. An analysis of microarray data revealed that the proteins upregulated in MM cells co-cultured with ADs included autophagy proteins such as Beclin-1 and signaling kinases such as AMPK, which are involved in MM cell proliferation and cell death. The array data also revealed that the proteins upregulated in ADs co-cultured with MM cells included AD-related proteins and transcriptional factors such as PPAR?2, which are involved in AD differentiation and ADs' production of adipokines. On the basis of these novel findings, we hypothesize that MM-secreted DKK-1 enhances AD differentiation and chemerin secretion and that AD-secreted chemerin in turn protects MM cells against chemotherapy-induced apoptosis. In the proposed study, we will determine whether AD-secreted chemerin induces autophagy, thereby inhibiting MM cell apoptosis, by activating AMPK and inhibiting mTOR. We will also determine whether MM-secreted DKK-1 activates PPAR?, thereby enhancing AD differentiation and ADs' production of chemerin, by inhibiting Wnt/-catenin signaling. The knowledge gained with the successful completion of the proposed work will improve the care of MM patients by informing the development of new strategies to combat relapsed or refractory disease.

Public Health Relevance

Overall goal of the proposed study is to elucidate the mechanism by which chemotherapy resistance is maintained in myeloma cells. We found that bone marrow adipocytes interact with myeloma cells and that this interaction contributes to chemotherapy resistance by promoting adipokine chemerin secretion from adipocytes and Wnt inhibitor dickkopf-1 secretion from myeloma cells, and we thus hypothesize that dickkopf-1 enhances adipocyte differentiation and chemerin secretion and that chemerin in turn inhibits myeloma cell apoptosis. The completion of the proposed work will inform the development of new strategies to combat relapsed or refractory myeloma, thereby improving the care of myeloma patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA190863-03
Application #
9308928
Study Section
Tumor Microenvironment Study Section (TME)
Program Officer
Howcroft, Thomas K
Project Start
2015-07-03
Project End
2020-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
3
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Internal Medicine/Medicine
Type
Hospitals
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Pang, Jianan; Shi, Qiaofa; Liu, Zhiqiang et al. (2017) Resistin induces multidrug resistance in myeloma by inhibiting cell death and upregulating ABC transporter expression. Haematologica 102:1273-1280
Zhang, Mingjun; He, Jin; Yang, Jing (2016) Targeting Human ?-Microglobulin with Monoclonal Antibodies in Multiple Myeloma - A Potential in Treatment. Chemotherapy (Los Angel) 5:
Liu, Huan; Liu, Zhiqiang; Du, Juan et al. (2016) Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma. Sci Transl Med 8:353ra113
Liu, Zhiqiang; Xu, Jingda; He, Jin et al. (2015) Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget 6:34329-41