The overall goal of this project is to prove the hypothesis that bi-directional interaction between tumor microenvironment and macrophages plays significant role in tumor progression and therapy efficacy. This hypothesis is specifically formulated at the level of living tissue and therefore will be tested in vivo using innovative electron paramagnetic resonance (EPR)-based multifunctional approaches. These approaches will be used to correlate, in vivo, the role of macrophages and macrophage-specific HIF-1a and HIF-2a in the regulation of tumor hypoxia, extracellular pH (pHe), redox and glutathione (GSH); and how deletion of these factors affects clinically-relevant anti-cancer treatment strategies in the PyMT mouse model of breast cancer.
The specific aims are: (SA1) To optimize magnetic resonance modalities for in vivo multifunctional monitoring of tumor tissue parameters: pH, oxygen, redox and GSH. Novel paramagnetic probes and techniques will be optimized for multi-functional application in tumor tissue with the focus on application to the PyMT mammary tumors in mice. (SA2) To investigate the role of macrophages in regulating the tumor microenvironment in breast cancer. We hypothesize that macrophages significantly affect oxygen tension, acidosis, redox and intracellular GSH (EPR signature of tumor microenvironment) in breast cancer, and that despite both being hypoxia-inducible proteins, macrophage HIF-1a and HIF-2a have disparate and opposing roles in the regulation of the these parameters in the tumor microenvironment, and that we can detect changes in corresponding EPR signature between transgenic mice containing the macrophage ablation or HIF-1a or HIF- 2a deletions. (SA3) To investigate macrophage-regulated tumor microenvironment and their role in chemotherapy efficacy in breast cancer. We will test the hypothesis that tumor pO2, pHe, redox and GSH all combine to form a tumor microenvironment profile that can predict levels of success for standard chemotherapies, and macrophages are a lynchpin in tumor microenvironment regulation. Specifically, we will test whether predominance in tumor macrophage polarity (M1/M2) will regulate a tumor microenvironment and the efficacy of standard chemotherapies, such as docetaxel, and whether macrophage HIF-1a deletion will increase docetaxel effectiveness. In summary, the results may provide new insight into the tumor microenvironment and macrophage regulation of efficacy of clinically-relevant anti-cancer therapies.

Public Health Relevance

This project aims to prove the hypothesis that bi-directional interaction between tumor microenvironment and macrophages plays significant role in tumor progression. The experiments using innovative magnetic resonance approaches for multifunctional in vivo tumor tissue monitoring in mice that lack macrophages or hypoxia-regulated macrophage functions in a mouse model of breast cancer may provide new insight into the tumor microenvironment and macrophage regulation of efficacy of clinically-relevant anti-cancer therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA194013-05
Application #
9671363
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Venkatachalam, Sundaresan
Project Start
2015-11-05
Project End
2021-03-31
Budget Start
2019-04-01
Budget End
2021-03-31
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
West Virginia University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
191510239
City
Morgantown
State
WV
Country
United States
Zip Code
26506
Tseytlin, Mark; Stolin, Alexander V; Guggilapu, Priyaankadevi et al. (2018) A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner. Phys Med Biol 63:105010
Gorodetskii, Artem A; Eubank, Timothy D; Driesschaert, Benoit et al. (2018) Oxygen-induced leakage of spin polarization in Overhauser-enhanced magnetic resonance imaging: Application for oximetry in tumors. J Magn Reson 297:42-50
Khramtsov, Valery V (2018) In Vivo Electron Paramagnetic Resonance: Radical Concepts for Translation to the Clinical Setting. Antioxid Redox Signal 28:1341-1344
Kishimoto, Shun; Krishna, Murali C; Khramtsov, Valery V et al. (2018) In Vivo Application of Proton-Electron Double-Resonance Imaging. Antioxid Redox Signal 28:1345-1364
Poncelet, Martin; Driesschaert, Benoit; Bobko, Andrey A et al. (2018) Triarylmethyl-based biradical as a superoxide probe. Free Radic Res 52:373-379
Sanzhaeva, Urikhan; Xu, Xuan; Guggilapu, Priyaankadevi et al. (2018) Imaging of Enzyme Activity by Electron Paramagnetic Resonance: Concept and Experiment Using a Paramagnetic Substrate of Alkaline Phosphatase. Angew Chem Int Ed Engl 57:11701-11705
Bobko, Andrey A; Eubank, Timothy D; Driesschaert, Benoit et al. (2018) In Vivo EPR Assessment of pH, pO2, Redox Status, and Concentrations of Phosphate and Glutathione in the Tumor Microenvironment. J Vis Exp :
Khramtsov, Valery V (2018) In Vivo Molecular Electron Paramagnetic Resonance-Based Spectroscopy and Imaging of Tumor Microenvironment and Redox Using Functional Paramagnetic Probes. Antioxid Redox Signal 28:1365-1377
Bobko, Andrey A; Eubank, Timothy D; Driesschaert, Benoit et al. (2017) Interstitial Inorganic Phosphate as a Tumor Microenvironment Marker for Tumor Progression. Sci Rep 7:41233
Bobko, Andrey A; Evans, Jason; Denko, Nicholas C et al. (2017) Concurrent Longitudinal EPR Monitoring of Tissue Oxygenation, Acidosis, and Reducing Capacity in Mouse Xenograft Tumor Models. Cell Biochem Biophys 75:247-253

Showing the most recent 10 out of 14 publications