Advances in radiotherapy (RT) delivery seek to improve dose conformity to increase the therapeutic ratio. A key step in this process is the delineation of treatment targets and normal tissue avoidance regions. As treatment margins around delineated volumes shrink, if delineation variability is not accounted for, disparate volumes identified by different delineators, different imaging modalities, and different structure mapping algorithms may dominate the efficacy of both an individual patients' treatment and the collective results of clinical trials. While efficacy should be enhanced with improved delineation consistency, improved baseline imaging (including functional imaging) to more clearly see the tissues, and improved deformable registration algorithms to better align delineations from different images, benefits from such improvements will be jeopardized until methods to quantify and communicate the clinical effects of the patient-specific residual uncertainties in these processes exist. Uncertainty quantification enables mitigation as well as determination of when further uncertainty reductions provide no benefit. This project aims to (1) identify clinical situations in which delineation variability negatively impacts treatment efficacy in light of other inherent treatment uncertainties, (2) model delineation variability so that it may be estimated on a per-patient basis and communicated to the treatment team, and (3) develop treatment planning and delivery methods that mitigate the joint effect of delineation and other uncertainties in radiation therapy, thereby creating efficacious radiation therapy treatment plans.

Public Health Relevance

Radiation therapy advances hinge on the ability to conform the radiation delivery to the tumor while conformably avoiding adjacent healthy tissues. Physician delineations of tumor and normal tissue regions, however, vary from physician to physician and with repeated physician delineation sessions. Similar, but smaller, variabilities exist in computer-based delineations. Other uncertainties in radiation therapy are shrinking to the point that delineation variations result in changes in tissues identified for conformal treatment and conformal avoidance. This proposal aims to identify when radiation delineation variations can negatively impact a patient's treatment, how to effectively communicate the variation and its impact to physicians, and how to design radiation treatments that are insensitive to delineation variations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA222216-01A1
Application #
9595757
Study Section
Radiation Therapeutics and Biology Study Section (RTB)
Program Officer
Obcemea, Ceferino H
Project Start
2018-08-01
Project End
2023-07-31
Budget Start
2018-08-01
Budget End
2019-07-31
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Virginia
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904