This competitive renewal application seeks continued support for a long-standing and very productive project that uses rodent models to elucidate mechanisms underlying the behavioral effects of synthetic hallucinogenic drugs of abuse, including LSD and substituted amphetamines, and hallucinogenic natural products used in recreational, ritual, or religious contexts, including psilocybin mushrooms (psilocin), peyote cactus (mescaline), and Ayahuasca tea (DMT, 5MeODMT). Based on the profound effects of hallucinogens on responses to sensory and emotional stimuli in humans, hallucinogenic drug effects in rats and mice are assessed using two complementary behavioral paradigms that have direct counterparts in the study of human behavior. These translational paradigms are prepulse inhibition of the startle response, an operational measure of sensorimotor gating that is deficient in some psychiatric disorders, and rat and mouse Behavioral Pattern Monitors that provide a multivariate profile of exploratory and locomotor responses matching that used to assess psychiatric patients and psychostimulant abusers in the human Behavioral Pattern Monitor. These computerized systems assess activity, exploration, and behavioral organization - three major aspects of mammalian behavior in a novel environment. In addition, the hallucinogen-induced head-twitch response in rodents is used for specific questions. Selected drug studies are complemented by studies of mutant mice having specific deficits in serotonin or glutamate receptor subtypes. This combination of pharmacological and genetic manipulations provides converging approaches to hypothesis testing. The project has 3 specific aims.
Aim 1 is to characterize and identify the mechanism by which synthetic equivalents of Ayahuasca tea ("Pharmahuasca") alter exploratory behavior in rats.
Aim 2 tests specific hypotheses regarding the different serotonin receptor subtypes that mediate the behavioral effects of phenylalkylamine and indoleamine hallucinogens in mice. Given the important species differences in the effects of many serotonergic and dopaminergic drugs, these results will be compared with previous data from rats to better understand the relevance of the animal models to drug effects in humans. In light of the recent resumption of human studies with hallucinogens, and reports indicating that hallucinogens may possess clinical efficacy, a more complete understanding of the action of these drugs is urgently needed.
Aim 3 is to test the hypothesis that metabotropic glutamatergic mGlu2/3 and mGlu5 receptors modulate the behavioral effects of serotonergic hallucinogens, extending recent findings suggesting that common pathways contribute to the effects of serotonergic and glutamatergic hallucinogens. These studies are responsive to PA-07-374 "Psychopharmacology of Widely Available Psychoactive Natural Products". This research uses behavioral measures that can be translated directly into parallel measures of human behavior to elucidate the neurobiological mechanisms responsible for the acute effects of hallucinogens, which presumably lead to the recreational use of these drugs of abuse.

Public Health Relevance

Despite hundreds of years of human experimentation and recent increases in the use of hallucinogens either as religious sacraments or as "Club Drugs" in recreational contexts, very little is known about the brain mechanisms underlying the behavioral effects of hallucinogens. This long-standing project uses rodent models to identify the neurobiological mechanisms of action responsible for the effects of naturally occurring hallucinogens, such as psilocybin, mescaline, and Ayahuasca, and synthetic hallucinogens such as LSD. Such information is critical to understand the consequences of the use of these compounds and to provide models of psychosis that could help identify novel therapeutic targets for neuropsychiatric disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA002925-28
Application #
8230542
Study Section
Biobehavioral Regulation, Learning and Ethology Study Section (BRLE)
Program Officer
Frankenheim, Jerry
Project Start
1981-09-30
Project End
2016-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
28
Fiscal Year
2012
Total Cost
$309,750
Indirect Cost
$109,750
Name
University of California San Diego
Department
Psychiatry
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
van Enkhuizen, Jordy; Geyer, Mark A; Halberstadt, Adam L et al. (2014) Dopamine depletion attenuates some behavioral abnormalities in a hyperdopaminergic mouse model of bipolar disorder. J Affect Disord 155:247-54
Dean, Brian; Moller, Hans-Jurgen; Svensson, Torgny H et al. (2014) Problems and solutions to filling the drying drug pipeline for psychiatric disorders: a report from the inaugural 2012 CINP Think Tank. Int J Neuropsychopharmacol 17:137-48
Halberstadt, Adam L; Geyer, Mark A (2014) Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology 77:200-7
Halberstadt, Adam L; Geyer, Mark A (2013) Serotonergic hallucinogens as translational models relevant to schizophrenia. Int J Neuropsychopharmacol 16:2165-80
Halberstadt, Adam L; Geyer, Mark A (2013) Characterization of the head-twitch response induced by hallucinogens in mice: detection of the behavior based on the dynamics of head movement. Psychopharmacology (Berl) 227:727-39
Halberstadt, Adam L; Powell, Susan B; Geyer, Mark A (2013) Role of the 5-HTýýýA receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice. Neuropharmacology 70:218-27
Adams, Wendy K; Halberstadt, Adam L; van den Buuse, Maarten (2013) Hippocampal serotonin depletion unmasks differences in the hyperlocomotor effects of phencyclidine and MK-801: quantitative versus qualitative analyses. Front Pharmacol 4:109
Halberstadt, Adam L; Buell, Mahalah R; Price, Diana L et al. (2012) Differences in the locomotor-activating effects of indirect serotonin agonists in habituated and non-habituated rats. Pharmacol Biochem Behav 102:88-94
van den Buuse, Maarten; Becker, Thorsten; Kwek, Perrin et al. (2011) Disruption of prepulse inhibition by 3,4-methylenedioxymethamphetamine (MDMA): comparison between male and female wild-type and 5-HT(1A) receptor knockout mice. Int J Neuropsychopharmacol 14:856-61
Halberstadt, Adam L; Lehmann-Masten, Virginia D; Geyer, Mark A et al. (2011) Interactive effects of mGlu5 and 5-HT2A receptors on locomotor activity in mice. Psychopharmacology (Berl) 215:81-92

Showing the most recent 10 out of 130 publications