This application is a competing renewal of an R01 grant subsequently modified to R37 status following a Merit Award from NIDA. The initial application proposed "to correlate the molecular properties of cannabimimetic agents with their biochemical/pharmacological properties" in order to identify the pharmacophoric profiles of key compound classes that directly modulate the functions of the CB1 and CB2 cannabinoid receptors (CBRs). This information was used to design, synthesize and develop later generation CBR (ant) agonists with distinct pharmacological profiles either as molecular probes or leads for medications development. All of the above goals were completed. During this project period, we were motivated to extend our goals by new findings on the effects of enzymatic endocannabinoid deactivation by specific esterases. We now propose to study the three key brain esterases involved in endocannabinoid deactivation, namely, monoacyl glycerol lipase (MGL), fatty acid amide hydrolase (FAAH) and ?/?-hydrolase domain-containing 6 (ABHD6) for their structural and functional properties. Inhibition of these enzymes enhances endocannabinoid levels, indirectly activates cannabinoid receptors and modulates cannabinergic signaling. All three enzymes have been implicated in mechanisms associated with addiction and pain and are potentially useful targets for therapeutic intervention. The proposed work will be carried out using ligands that interact covalently or non-covalently with each of the enzymes and will include mass spectrometry and nuclear magnetic resonance experiments to obtain detailed structural and functional information for each of the enzymes. The results will be used to design and synthesize selective reversible and irreversible inhibitors with optimized pharmacological profiles for each of the enzymes. Additionally, we propose to develop selective ligands possessing dual action with equal ability to inactivate two enzymes. Successful inhibitors will serve as useful pharmacological probes to study the endocannabinoid system as well as leads for the development of medications for addiction and pain management.

Public Health Relevance

The application proposes to study the structural and functional properties of three key endocannabinoid deactivating brain enzymes using biochemical and biophysical methods. The information will be used to design and develop novel enzyme inhibitors with single and dual action as probes for pharmacological research or as leads for the development of medications for addiction and pain.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
2R01DA003801-23A1
Application #
8598338
Study Section
Special Emphasis Panel (ZRG1-MDCN-C (58))
Program Officer
Hillery, Paul
Project Start
1992-04-01
Project End
2018-02-28
Budget Start
2013-06-15
Budget End
2014-02-28
Support Year
23
Fiscal Year
2013
Total Cost
$483,666
Indirect Cost
$169,222
Name
Northeastern University
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
001423631
City
Boston
State
MA
Country
United States
Zip Code
02115
Tyukhtenko, Sergiy; Chan, Karrie; Jiang, Rubin et al. (2015) Hydrogen-bonded His93 as a sensitive probe for identifying inhibitors of the endocannabinoid transport protein FABP7. Chem Biol Drug Des 85:534-40
Deng, Liting; Guindon, Josée; Cornett, Benjamin L et al. (2015) Chronic cannabinoid receptor 2 activation reverses paclitaxel neuropathy without tolerance or cannabinoid receptor 1-dependent withdrawal. Biol Psychiatry 77:475-87
Rahn, Elizabeth J; Deng, Liting; Thakur, Ganesh A et al. (2014) Prophylactic cannabinoid administration blocks the development of paclitaxel-induced neuropathic nociception during analgesic treatment and following cessation of drug delivery. Mol Pain 10:27
Makriyannis, Alexandros (2014) 2012 Division of medicinal chemistry award address. Trekking the cannabinoid road: a personal perspective. J Med Chem 57:3891-911
Zhuang, Jianqin; Yang, De-Ping; Nikas, Spyros P et al. (2013) The interaction of fatty acid amide hydrolase (FAAH) inhibitors with an anandamide carrier protein using (19)F-NMR. AAPS J 15:477-82
Thakur, Ganesh A; Bajaj, Shama; Paronis, Carol et al. (2013) Novel adamantyl cannabinoids as CB1 receptor probes. J Med Chem 56:3904-21
Karageorgos, Ioannis; Wales, Thomas E; Janero, David R et al. (2013) Active-site inhibitors modulate the dynamic properties of human monoacylglycerol lipase: a hydrogen exchange mass spectrometry study. Biochemistry 52:5016-26
West, Jay M; Zvonok, Nikolai; Whitten, Kyle M et al. (2012) Mass spectrometric characterization of human N-acylethanolamine-hydrolyzing acid amidase. J Proteome Res 11:972-81
Järbe, Torbjörn U C; Deng, Hongfen; Vadivel, Subramanian K et al. (2011) Cannabinergic aminoalkylindoles, including AM678=JWH018 found in 'Spice', examined using drug (?(9)-tetrahydrocannabinol) discrimination for rats. Behav Pharmacol 22:498-507
Tian, Xiaoyu; Pavlopoulos, Spiro; Yang, De-Ping et al. (2011) The interaction of cannabinoid receptor agonists, CP55940 and WIN55212-2 with membranes using solid state 2H NMR. Biochim Biophys Acta 1808:2095-101

Showing the most recent 10 out of 151 publications