The long term goal of this research project is to elucidate the basis for the actions of the cannabinoids (CBs) at the molecular level. To this end, we are developing the elements of an understanding of the relationships between cannabinoid ligand structure;cannabinoid receptor structure;and cannabinoid receptor activation at an atomic level of detail. The research plan includes two emphases: ligand-receptor recognition and ligand-induced receptor activation/inactivation and is based upon 3D computer models of the CB1 and CB2 receptors that we have developed and refined during the current grant period. Our recent microsecond timescale molecular dynamics simulations of the CB2 receptor in a POPC bilayer have yielded important insights concerning the differences between CB1 and CB2. We will use this information here to explore the interactions important for the maintenance of the CB2 receptor inactive state and those responsible for the generation of the CB2 activated state. A binding site model for CB2 inverse agonists/antagonists will be developed in order to identify those interactions necessary for the production of inverse agonism at CB2. Studies will also be undertaken to identify the interaction site(s) for novel CB1 allosteric modulators with the goal of designing more potent modulators. At each step, our work will be aided and supplemented by collaboration with experimental medicinal chemists, molecular biologists and pharmacologists. Collaborative studies will be used to test our models in an iterative fashion with the goal that these models represent the current state of knowledge in the cannabinoid field. The information about cannabinoid receptor structure and binding modes of ligands that will emerge from the collaborative studies proposed here will aid in fundamental structure-function studies of this important class of receptors and will also aid in the design of improved therapeutic agents based on the cannabinoids.

Public Health Relevance

The long term goal of this research project is to elucidate the basis for the actions of the cannabinoids (CBs) at the molecular level. To this end, we are developing the elements of an understanding of the relationships between cannabinoid ligand structure;cannabinoid receptor structure;and cannabinoid receptor activation at an atomic level of detail. The research plan includes two emphases: ligand-receptor recognition and ligand-induced receptor activation/inactivation and is based upon 3D computer models of the CB1 and CB2 receptors that we have developed and refined during the current grant period. Results of the studies proposed here have the potential for the development of therapeutic agents for the treatment of inflammation and metabolic syndrome.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA003934-26
Application #
8444721
Study Section
Special Emphasis Panel (ZRG1-MDCN-C (02))
Program Officer
Hillery, Paul
Project Start
1985-07-01
Project End
2014-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
26
Fiscal Year
2013
Total Cost
$312,104
Indirect Cost
$53,780
Name
University of North Carolina Greensboro
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
616152567
City
Greensboro
State
NC
Country
United States
Zip Code
27402
Mahmoud, Mariam M; Olszewska, Teresa; Liu, Hui et al. (2015) (4-(Bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229): a new cannabinoid CB1 receptor inverse agonist from the class of benzhydryl piperazine analogs. Mol Pharmacol 87:197-206
Schneider, Miriam; Kasanetz, Fernando; Lynch, Diane L et al. (2015) Enhanced Functional Activity of the Cannabinoid Type-1 Receptor Mediates Adolescent Behavior. J Neurosci 35:13975-88
Ragusa, Giulio; Gómez-Cañas, María; Morales, Paula et al. (2015) Synthesis, pharmacological evaluation and docking studies of pyrrole structure-based CB2 receptor antagonists. Eur J Med Chem 101:651-67
Goonawardena, Anushka V; Plano, Andrea; Robinson, Lianne et al. (2015) Modulation of food consumption and sleep-wake cycle in mice by the neutral CB1 antagonist ABD459. Behav Pharmacol 26:289-303
Nikas, Spyros P; Sharma, Rishi; Paronis, Carol A et al. (2015) Probing the carboxyester side chain in controlled deactivation (-)-δ(8)-tetrahydrocannabinols. J Med Chem 58:665-81
Janero, David R; Yaddanapudi, Suma; Zvonok, Nikolai et al. (2015) Molecular-interaction and signaling profiles of AM3677, a novel covalent agonist selective for the cannabinoid 1 receptor. ACS Chem Neurosci 6:1400-10
Mechoulam, Raphael; Hanuš, Lumír O; Pertwee, Roger et al. (2014) Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci 15:757-64
Shore, Derek M; Baillie, Gemma L; Hurst, Dow H et al. (2014) Allosteric modulation of a cannabinoid G protein-coupled receptor: binding site elucidation and relationship to G protein signaling. J Biol Chem 289:5828-45
Lucchesi, Valentina; Hurst, Dow P; Shore, Derek M et al. (2014) CB2-selective cannabinoid receptor ligands: synthesis, pharmacological evaluation, and molecular modeling investigation of 1,8-Naphthyridin-2(1H)-one-3-carboxamides. J Med Chem 57:8777-91
Vallée, Monique; Vitiello, Sergio; Bellocchio, Luigi et al. (2014) Pregnenolone can protect the brain from cannabis intoxication. Science 343:94-8

Showing the most recent 10 out of 55 publications