Chronic food restriction (FR) increases behavioral sensitivity to drugs of abuse in animal models and is associated with binge eating, which shares comorbidity with drug abuse, in clinical populations. Previous behavioral, biochemical and molecular studies of this laboratory suggest that FR increases the rewarding and locomotor-activating effects of abused drugs as a result of striatal neuroadaptations. Increases in cell signaling and gene expression in response to d- amphetamine and D-1 dopamine (DA) receptor stimulation have been observed. Of particular interest are increased phosphorylation of the NMDA receptor NR1 subunit, AMPA receptor GluR1 subunit, and upregulation of NMDA receptor-dependent ERK 1/2 MAP kinase and CaM kinase II signaling, CREB phosphorylation, and c-fos and neuropeptide gene expression. Several findings have been obtained that support a schema in which the striatal neuroadaptations are secondary to a decrease in basal DA. Moreover, recent findings suggest that decreased stimulation of one or more receptor tyrosine kinases, -most clearly, TrkB-, in the ventral tegmental area (VTA) may be a triggering condition for the striatal and behavioral effects of FR. While the neuroadaptations under investigation may adaptively invigorate goal-directed behavior and facilitate reward-related learning during periods of persistent negative energy balance, they may also be vulnerable to subversion by drugs of abuse and palatable foods in a manner that reinforces maladaptive compulsive behavior. The research proposed in this application is aimed at elucidating midbrain and striatal mechanisms involved in the increased behavioral responsiveness of FR rats to drugs of abuse. Chronic food restriction increases behavioral sensitivity to drugs of abuse in animal models and is associated with binge eating, compulsive exercise, and comorbid drug abuse with eating disorders in clinical populations. The proposed preclinical studies will investigate whether changes in trophic factor regulation of midbrain dopamine neuronal function and consequent alterations in interrelated dopamine and glutamate receptor mechanisms in reward-related forebrain regions are involved in the enhanced behavioral sensitivity of food-restricted subjects to drugs of abuse. This work may identify neuroadaptations that normally mediate adaptive changes in behavior during periods of food scarcity but also, under certain circumstances, increase vulnerability to maladaptive forms of goal-directed behavior, including drug abuse.

Public Health Relevance

Chronic food restriction increases behavioral sensitivity to drugs of abuse in animal models and is associated with binge eating, compulsive exercise, and comorbid drug abuse with eating disorders in clinical populations. The proposed preclinical studies will investigate whether changes in trophic factor regulation of midbrain dopamine neuronal function and consequent alterations in interrelated dopamine and glutamate receptor mechanisms in reward-related forebrain regions are involved in the enhanced behavioral sensitivity of food-restricted subjects to drugs of abuse. This work may identify neuroadaptations that normally mediate adaptive changes in behavior during periods of food scarcity but also, under certain circumstances, increase vulnerability to maladaptive forms of goal-directed behavior, including drug abuse.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA003956-26
Application #
8245614
Study Section
Neurobiology of Motivated Behavior Study Section (NMB)
Program Officer
Frankenheim, Jerry
Project Start
1986-01-01
Project End
2013-09-14
Budget Start
2012-04-01
Budget End
2013-09-14
Support Year
26
Fiscal Year
2012
Total Cost
$405,727
Indirect Cost
$165,652
Name
New York University
Department
Psychiatry
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Peng, Xing-Xiang; Cabeza de Vaca, Soledad; Ziff, Edward B et al. (2014) Involvement of nucleus accumbens AMPA receptor trafficking in augmentation of D- amphetamine reward in food-restricted rats. Psychopharmacology (Berl) 231:3055-63
Zheng, Danielle; Liu, Shan; Cabeza de Vaca, Soledad et al. (2013) Effects of time of feeding on psychostimulant reward, conditioned place preference, metabolic hormone levels, and nucleus accumbens biochemical measures in food-restricted rats. Psychopharmacology (Berl) 227:307-20
Stouffer, Melissa A; Ali, Solav; Reith, Maarten E A et al. (2011) SKF-83566, a D1-dopamine receptor antagonist, inhibits the dopamine transporter. J Neurochem 118:714-20
Liu, Shan; Zheng, Danielle; Peng, Xing-Xiang et al. (2011) Enhanced cocaine-conditioned place preference and associated brain regional levels of BDNF, p-ERK1/2 and p-Ser845-GluA1 in food-restricted rats. Brain Res 1400:31-41
Carr, Kenneth D (2011) Food scarcity, neuroadaptations, and the pathogenic potential of dieting in an unnatural ecology: binge eating and drug abuse. Physiol Behav 104:162-7
Cabeza de Vaca, Soledad; Kannan, Pavitra; Pan, Yan et al. (2007) The adenosine A2A receptor agonist, CGS-21680, blocks excessive rearing, acquisition of wheel running, and increases nucleus accumbens CREB phosphorylation in chronically food-restricted rats. Brain Res 1142:100-9
Carr, Kenneth D (2007) Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav 91:459-72
Pan, Yan; Siregar, Ermanda; Carr, Kenneth D (2006) Striatal cell signaling in chronically food-restricted rats under basal conditions and in response to brief handling. Neurosci Lett 393:243-8
Hao, Joy; Cabeza de Vaca, Soledad; Pan, Yan et al. (2006) Effects of central leptin infusion on the reward-potentiating effect of D-amphetamine. Brain Res 1087:123-33
Zhen, Juan; Reith, Maarten E A; Carr, Kenneth D (2006) Chronic food restriction and dopamine transporter function in rat striatum. Brain Res 1082:98-101

Showing the most recent 10 out of 58 publications