Na1BzoH (6-desoxy-6-benzoylhydrazido-N-allyl-14- hydroxydihydronormorphinone) is a novel opiate active at both mu and kappa receptors. In the presence of Mg++ ions, 3H-NalBzoH labels mu receptors pseudoirreversibly, with a remarkably prolonged rate of dissociation which is 145-fold slower than 3H-naloxone. The binding is not covalent since the GTP analog Gpp(NH)p rapidly dissociates the ligand, presumably by interrupting a stabilized receptor-G-protein complex. 3H-NalBzoH also labels a novel kappa receptor subtype present in high densities in calf, rat and mouse brains, kappa3. In vivo, NalBzoH is a potent, long-acting mu antagonist, blocking morphine analgesia for over 24 hr after a single dose. Low doses of NalBzoH also partially reverse the inhibition of GI transit produced by morphine, completely antagonize morphine lethality and precipitate withdrawal in morphine-dependent mice. Higher NalBzoH doses produce analgesia through a kappa receptor mechanism based upon its sensitivity towards a series of antagonists. NalBzoH has excellent oral activity, with a potency equivalent to the subcutaneous route. Thus, NalBzoH has several potential advantages over traditional opiates and could be useful as either a long-acting antagonist or a nonabusable analgesic. We propose to examine the features which distinguish NalBzoH from traditional opiates: 1) its prolonged duration of mu receptor antagonism, 2) its potent kappa analgesia and 3) its excellent oral potency. We will determine whether the prolonged mu receptor antagonism results from pharmacokinetic factors, such as a slow clearance, or whether it corresponds to its ability to label mu receptors pseudoirreversibily. We will determine half-lives of distribution and elimination, volumes of distribution and clearances. Efforts will be made to identify active major metabolites. Using 3H-NalBzoH, we also will investigate the formation of psuedoirreversible mu binding following NalBzoH administration in vivo. We will synthesize a series of analogs of NalBzoH to be examined in binding studies looking at their ability to label mu receptors pseudoirreversibly and their affinity at a variety of opiate receptor subtypes, especially kappa3. Selected derivatives will be synthesized in radiolabeled form and their binding directly examined. Additional derivatives will be examined in vivo. Finally, we will compare the metabolism and pharmacokinetics of NalBzoH following both oral and intravenous administration.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA006241-03
Application #
3212842
Study Section
Drug Abuse Biomedical Research Review Committee (DABR)
Project Start
1990-07-01
Project End
1994-06-30
Budget Start
1992-07-01
Budget End
1993-06-30
Support Year
3
Fiscal Year
1992
Total Cost
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Le Rouzic, Valerie; Narayan, Ankita; Hunkle, Amanda et al. (2018) Pharmacological Characterization of Levorphanol, a G-Protein Biased Opioid Analgesic. Anesth Analg :
Che, Tao; Majumdar, Susruta; Zaidi, Saheem A et al. (2018) Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell 172:55-67.e15
Baumann, Michael H; Majumdar, Susruta; Le Rouzic, Valerie et al. (2018) Pharmacological characterization of novel synthetic opioids (NSO) found in the recreational drug marketplace. Neuropharmacology 134:101-107
Lu, Zhigang; Xu, Jin; Xu, Mingming et al. (2018) Truncated ?-Opioid Receptors With 6 Transmembrane Domains Are Essential for Opioid Analgesia. Anesth Analg 126:1050-1057
Davis, Mellar P; Pasternak, Gavril; Behm, Bertrand (2018) Treating Chronic Pain: An Overview of Clinical Studies Centered on the Buprenorphine Option. Drugs 78:1211-1228
Marrone, Gina F; Le Rouzic, Valerie; Varadi, Andras et al. (2017) Genetic dissociation of morphine analgesia from hyperalgesia in mice. Psychopharmacology (Berl) 234:1891-1900
Pasternak, Gavril W (2017) Allosteric Modulation of Opioid G-Protein Coupled Receptors by Sigma1 Receptors. Handb Exp Pharmacol 244:163-175
Kim, Felix J; Pasternak, Gavril W (2017) Cloning the sigma2 receptor: Wandering 40 years to find an identity. Proc Natl Acad Sci U S A 114:6888-6890
Xu, Jin; Lu, Zhigang; Narayan, Ankita et al. (2017) Alternatively spliced mu opioid receptor C termini impact the diverse actions of morphine. J Clin Invest 127:1561-1573
Urai, Ákos; Váradi, András; Sz?cs, Levente et al. (2017) Synthesis and pharmacological evaluation of novel selective MOR agonist 6?-pyridinyl amidomorphines exhibiting long-lasting antinociception. Medchemcomm 8:152-157

Showing the most recent 10 out of 86 publications