Neurons utilizing dopamine (DA) as a neurotransmitter constitute a rare neurochemical phenotype but nevertheless play an important role in regulating locomotion, motivation, cognition and hormone release. The DA transporter (DAT) is a plasma membrane transport protein that controls the spatio-temporal domains of DA neurotransmission by rapidly reaccumulating DA that has been released into the extracellular space. A wide spectrum of neurological and psychiatric disorders, including drug abuse, Parkinson's disease, schizophrenia, affective disorders, and attention deficit hyperactivity disorder is thought to involve DA systems and the DAT. The DAT is an important target for therapeutic and illicit drugs (e.g. methylphenidate, buproprion, amphetamine, and cocaine), and serves as the point of entry for DA-specific neurotoxins. DAT radioligand binding provides an in vivo measure of DA cell integrity and can be used to monitor the efficacy of therapeutic interventions in neurodegenerative disease.
The Aims of this project are to identify the silencing element(s) and cognate transcription factor(s) that repress transcription of the human dopamine transporter gene in non-dopaminergic cells, as well the mechanism by which the transcription factor nurrl activates human dopamine transporter gene transcription in dopamine neurons. It is likely that a greater understanding of the regulation of the DAT expression will impact the diagnosis and treatment of a number of neuropsychiatric disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA006470-15
Application #
7173441
Study Section
Molecular, Cellular and Developmental Neurosciences 2 (MDCN)
Program Officer
Colvis, Christine
Project Start
1990-04-01
Project End
2008-02-05
Budget Start
2007-02-01
Budget End
2008-02-05
Support Year
15
Fiscal Year
2007
Total Cost
$286,351
Indirect Cost
Name
Wayne State University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Miller, M L; Ren, Y; Szutorisz, H et al. (2018) Ventral striatal regulation of CREM mediates impulsive action and drug addiction vulnerability. Mol Psychiatry 23:1328-1335
Hernandez-Chan, Nancy G; Bannon, Michael J; Orozco-Barrios, Carlos E et al. (2015) Neurotensin-polyplex-mediated brain-derived neurotrophic factor gene delivery into nigral dopamine neurons prevents nigrostriatal degeneration in a rat model of early Parkinson's disease. J Biomed Sci 22:59
Bannon, Michael J; Savonen, Candace L; Hartley, Zachary J et al. (2015) Investigating the potential influence of cause of death and cocaine levels on the differential expression of genes associated with cocaine abuse. PLoS One 10:e0117580
Bannon, Michael J; Savonen, Candace L; Jia, Hui et al. (2015) Identification of long noncoding RNAs dysregulated in the midbrain of human cocaine abusers. J Neurochem 135:50-9
Razgado-Hernandez, Luis F; Espadas-Alvarez, Armando J; Reyna-Velazquez, Patricia et al. (2015) The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease. PLoS One 10:e0117391
Bannon, Michael J; Johnson, Magen M; Michelhaugh, Sharon K et al. (2014) A molecular profile of cocaine abuse includes the differential expression of genes that regulate transcription, chromatin, and dopamine cell phenotype. Neuropsychopharmacology 39:2191-9
Zhou, Yanhong; Michelhaugh, Sharon K; Schmidt, Carl J et al. (2014) Ventral midbrain correlation between genetic variation and expression of the dopamine transporter gene in cocaine-abusing versus non-abusing subjects. Addict Biol 19:122-31
Jacobs, M M; Ökvist, A; Horvath, M et al. (2013) Dopamine receptor D1 and postsynaptic density gene variants associate with opiate abuse and striatal expression levels. Mol Psychiatry 18:1205-10
Johnson, Magen M; David, James A; Michelhaugh, Sharon K et al. (2013) Authors' response. J Forensic Sci 58:562
Anderson, Sarah Ann R; Michaelides, Michael; Zarnegar, Parisa et al. (2013) Impaired periamygdaloid-cortex prodynorphin is characteristic of opiate addiction and depression. J Clin Invest 123:5334-41

Showing the most recent 10 out of 46 publications