This project aims to understand the density, intracellular processing, PDZ interactions, trafficking, and possible dimerization of the GABA transporter, mGAT1, by studying knock-in mice carrying fusions between mGAT1 and fluorescent proteins (XFP, where G = green; C, cyan; Y, yellow). The major tool is quantitative fluorescence microscopy. A mGAT1-XFP knock-in mouse strain will be developed that preserves a crucial PDZ interaction. mGAT1 will be counted in the synaptic structures of mGAT1-XFP knock-in mice. GAT1 interactions will be studied using hippocampal and cerebellar culture systems for the mGAT1-XFP mice. mGAT1-XFP mice will be mated with knockout mice for several synaptic proteins known to interact with GAT1, in order to study the effects on GAT1 distribution, trafficking, and sorting, using the culture system. The hypothesis that GAT1 dimerizes in vivo will be tested using fluorescent resonance energy transfer (FRET) between CFP-mGAT1 and YFP-mGAT1. The hypothesis will be tested that GAT1 is carried on a special vesicle, and the number of mGAT1 molecules in a vesicle will be counted using evanescent wave-total internal reflection fluorescence (TIR-FM) microscopy. Also the project aims to understand the functions of GAT1 by continuing to study the intron 14-neo-mGAT1 strain, which is essentially a GAT1 knockout. The major tools are whole-animal physiology and electrophysiology. The motor phenotype produced in WT mice by acute administration of GAT1 inhibitors will be studied, to ask whether acute blockade explains the motor and behavioral anomalies of the intron 14-neo-mGAT1 strain. GAT1 will be selectively reintroduced in various brain areas and cell types to study the motor defects, by mating with various strains that have restricted expression of cre recombinase. Electrophysiology of the knockout will be studied. Similar knowledge will also be gathered about another GABA transporter, GAT3, by replicating the research program for GAT3-XFP mice. A GAT3-XFP fusion protein will be selected that displays proper function, sorting, and targeting. Knock-in mice will be constructed bearing this protein. Density, intracellular processing, trafficking, and possible dimerization of GAT3 will be studied. Similar knowledge will be sought about the serotonin transporter, SERT, by replicating specific aim 1 for SERT-XFP knock-in mice. Neurotransmitter transporters are targets for many modern drugs of therapy and abuse.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA009121-11
Application #
6860973
Study Section
Special Emphasis Panel (ZRG1-MDCN-4 (01))
Program Officer
Pilotte, Nancy S
Project Start
1994-09-30
Project End
2008-02-28
Budget Start
2005-03-01
Budget End
2006-02-28
Support Year
11
Fiscal Year
2005
Total Cost
$402,431
Indirect Cost
Name
California Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Lester, Henry A; Miwa, Julie M; Srinivasan, Rahul (2012) Psychiatric drugs bind to classical targets within early exocytotic pathways: therapeutic effects. Biol Psychiatry 72:907-15
Moss, Fraser J; Imoukhuede, P I; Scott, Kimberly et al. (2009) GABA transporter function, oligomerization state, and anchoring: correlates with subcellularly resolved FRET. J Gen Physiol 134:489-521
Imoukhuede, P I; Moss, Fraser J; Michael, Darren J et al. (2009) Ezrin mediates tethering of the gamma-aminobutyric acid transporter GAT1 to actin filaments via a C-terminal PDZ-interacting domain. Biophys J 96:2949-60
Drenan, Ryan M; Grady, Sharon R; Whiteaker, Paul et al. (2008) In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron 60:123-36
Drenan, Ryan M; Nashmi, Raad; Imoukhuede, Princess et al. (2008) Subcellular trafficking, pentameric assembly, and subunit stoichiometry of neuronal nicotinic acetylcholine receptors containing fluorescently labeled alpha6 and beta3 subunits. Mol Pharmacol 73:27-41
Nashmi, Raad; Xiao, Cheng; Deshpande, Purnima et al. (2007) Chronic nicotine cell specifically upregulates functional alpha 4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. J Neurosci 27:8202-18
Ouyang, Yannan; Wong, Michael; Capani, Francisco et al. (2005) Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines. Eur J Neurosci 22:2995-3005
Jensen, Kimmo; Chiu, Chi-Sung; Sokolova, Irina et al. (2003) GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol 90:2690-701
Li, Ming; Farley, Robert A; Lester, Henry A (2002) Voltage-dependent transient currents of human and rat 5-HT transporters (SERT) are blocked by HEPES and ion channel ligands. FEBS Lett 513:247-52
Chiu, Chi-Sung; Jensen, Kimmo; Sokolova, Irina et al. (2002) Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions. J Neurosci 22:10251-66

Showing the most recent 10 out of 20 publications