Tobacco Smoking, Genes &Nicotinic Receptors Habitual tobacco smoking is a complex trait with strong genetic influences. Genetic factors are estimated to account for 50-72% of the risk for developing nicotine dependence. The nicotinic acetylcholine receptor (nAChR) is the initial site of action of nicotine, the addictive chemical constituent of tobacco smoke and thus, is a primary candidate to carry genetic effects for tobacco smoking between generations. nAChR containing the 22-subunit (22-nAChR) in combination with 14 subunits are the most prevalent nAChR in brain, and are linked to the addictive properties of tobacco smoking. In our previous proposal, for aim 1, we demonstrated using [123I]5-IA 85380 SPECT imaging that these receptors are higher (26-36%) in the striatum, and throughout the cerebral cortex and cerebellum in tobacco smokers versus nonsmokers.
For aim 2 we evaluated the normalization of the receptor over the first month of abstinence, and in addition, evaluated in smokers that were able to abstain from smoking for longer periods of time up to 12 weeks of abstinence. The findings from this aim were very heterogenous, with some subjects showing decreases ranging from 4% to 43% in nAChR availability over the first month of abstinence and others showing no change. We have hypothesized that the variability in the regulatory effects of habitual tobacco smoking on nicotinic receptor availability is genetically determined. In the present proposal, we seek to validate this hypothesis through the following specific aims: 1) to determine if 22-nAChR availability is genetically determined in European-American never smokers. 2) to determine if the adaptive increase in 22-nAChR availability in European-American smokers is genetically determined and 3) to determine if the change in 22-nAChR availability over the first month of abstinence in smokers is genetically determined. The findings from these studies may provide definitive genetic and neurochemical phenotypic evidence that will allow in future studies for smokers to be stratified and tested for responses to various smoking cessation treatments.

Public Health Relevance

Smoking is the leading known cause of preventable death and disease. Despite the debilitating medical, economic and social costs of cigarette smoking, people continue to smoke. The persistence of this destructive behavior is a consequence of insufficient smoking cessation treatments to assist smokers in their efforts to quit smoking. The nicotinic acetylcholine receptor (nAChR) is a likely neurochemical substrate of the addiction to cigarette smoking. These studies will define the genes and brain chemicals that may help to design treatment studies that will ultimately help tailor smoking cessation treatments, they will decrease the incidence of smoking-related deaths and disease that plague the world today.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Project (R01)
Project #
Application #
Study Section
Neural Basis of Psychopathology, Addictions and Sleep Disorders Study Section (NPAS)
Program Officer
Kautz, Mary A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Esterlis, Irina; Ranganathan, Mohini; Bois, Frederic et al. (2014) In vivo evidence for ?2 nicotinic acetylcholine receptor subunit upregulation in smokers as compared with nonsmokers with schizophrenia. Biol Psychiatry 76:495-502
Hannestad, Jonas O; Cosgrove, Kelly P; DellaGioia, Nicole F et al. (2013) Changes in the cholinergic system between bipolar depression and euthymia as measured with [123I]5IA single photon emission computed tomography. Biol Psychiatry 74:768-76
Cosgrove, Kelly P; Esterlis, Irina; McKee, Sherry A et al. (2012) Sex differences in availability of ýý2*-nicotinic acetylcholine receptors in recently abstinent tobacco smokers. Arch Gen Psychiatry 69:418-27
Esterlis, Irina; Mitsis, Effie M; Batis, Jeffery C et al. (2011) Brain ýý2*-nicotinic acetylcholine receptor occupancy after use of a nicotine inhaler. Int J Neuropsychopharmacol 14:389-98
Xie, Pingxing; Kranzler, Henry R; Krauthammer, Michael et al. (2011) Rare nonsynonymous variants in alpha-4 nicotinic acetylcholine receptor gene protect against nicotine dependence. Biol Psychiatry 70:528-36
Cosgrove, Kelly P; Esterlis, Irina; McKee, Sherry et al. (2010) Beta2* nicotinic acetylcholine receptors modulate pain sensitivity in acutely abstinent tobacco smokers. Nicotine Tob Res 12:535-9
Cosgrove, Kelly P (2010) Imaging receptor changes in human drug abusers. Curr Top Behav Neurosci 3:199-217
Esterlis, Irina; Cosgrove, Kelly P; Petrakis, Ismene L et al. (2010) SPECT imaging of nicotinic acetylcholine receptors in nonsmoking heavy alcohol drinking individuals. Drug Alcohol Depend 108:146-50
Cosgrove, Kelly P; Krantzler, Erica; Frohlich, Erin B et al. (2009) Dopamine and serotonin transporter availability during acute alcohol withdrawal: effects of comorbid tobacco smoking. Neuropsychopharmacology 34:2218-26
Mitsis, Effie M; Cosgrove, Kelly P; Staley, Julie K et al. (2009) Age-related decline in nicotinic receptor availability with [(123)I]5-IA-85380 SPECT. Neurobiol Aging 30:1490-7

Showing the most recent 10 out of 15 publications