Nicotine has been shown to affect GABAergic function in the brain. In rats, nicotine increases GABA release acutely, and human and animal studies have implicated the GABAergic system in the acquisition and maintenance of nicotine addiction. Transient increases in levels of human cortical GABA levels have been observed by magnetic resonance spectroscopy (MRS) with nicotine administration in preliminary studies in humans. Furthermore, nicotine has been seen to elevate brain GABA synthesis 2-4 fold in human brain. Knowing the effects of acute nicotine administration on brain GABA may provide insight into the interaction of tobacco smoking with prevalent disorders that are known to involve the GABAergic system, such as depression and alcoholism. This project may also provide further information about why it is so hard for some people to stop smoking. It has been shown that menstrual cycle related changes in brain GABA levels are abolished by smoking, and that men and women have some different responses to nicotine, so this project will also explore gender-based differences in GABAergic responses in the human brain. Several questions will be answered: 1) Does acute nicotine administration increase brain GABA? 2) How long does it take brain GABA to return to pre-nicotine levels? 3) Does nicotine increase GABA synthesis? 4) Does gender affect nicotine-induced changes in brain GABA levels and rates of synthesis? The concentration and rates of synthesis of brain GABA will be measured in 40 healthy smokers (20 men, 20 women) after overnight abstinence from smoking. The measurements will be conducted twice, once with a nicotine inhaler, and once with a placebo inhaler. Exclusion criteria will include current neuropsychiatric disorders, or a recent history of such.

Public Health Relevance

This work will establish what changes in GABAergic neurons in the cerebral cortex are associated with nicotine and some of the subjective feelings that people experience with nicotine. The outcomes may help to explain why some of the newer drug-based smoking cessation approaches are effective and guide the development of new approaches. The results may also contribute to our understanding of why depressed people and patients with alcohol dependence have a greater likelihood of addiction to tobacco.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Project (R01)
Project #
Application #
Study Section
Neural Basis of Psychopathology, Addictions and Sleep Disorders Study Section (NPAS)
Program Officer
Kautz, Mary A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Abdallah, Chadi G; Niciu, Mark J; Fenton, Lisa R et al. (2014) Decreased occipital cortical glutamate levels in response to successful cognitive-behavioral therapy and pharmacotherapy for major depressive disorder. Psychother Psychosom 83:298-307
Niciu, Mark J; Mason, Graeme F (2014) Neuroimaging in Alcohol and Drug Dependence. Curr Behav Neurosci Rep 1:45-54
Herzog, Raimund I; Jiang, Lihong; Herman, Peter et al. (2013) Lactate preserves neuronal metabolism and function following antecedent recurrent hypoglycemia. J Clin Invest 123:1988-98
Solecki, Wojciech; Wickham, Robert J; Behrens, Shay et al. (2013) Differential role of ventral tegmental area acetylcholine and N-methyl-D-aspartate receptors in cocaine-seeking. Neuropharmacology 75:9-18
Jiang, Lihong; Gulanski, Barbara Irene; De Feyter, Henk M et al. (2013) Increased brain uptake and oxidation of acetate in heavy drinkers. J Clin Invest 123:1605-14
Rothman, Douglas L; De Feyter, Henk M; de Graaf, Robin A et al. (2011) 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed 24:943-57
Valentine, Gerald W; Mason, Graeme F; Gomez, Rosane et al. (2011) The antidepressant effect of ketamine is not associated with changes in occipital amino acid neurotransmitter content as measured by [(1)H]-MRS. Psychiatry Res 191:122-7
Wang, Jie; Jiang, Lihong; Jiang, Yifeng et al. (2010) Regional metabolite levels and turnover in the awake rat brain under the influence of nicotine. J Neurochem 113:1447-58
Patel, Anant B; de Graaf, Robin A; Rothman, Douglas L et al. (2010) Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using 1H-[13C]-NMR. J Cereb Blood Flow Metab 30:1200-13