HIV-infected individuals who abuse heroin are at greater risk for HAND. The synaptodendritic injury that underlies HAND is largely mediated by infected and/or activated microglia and astroglia as neurons are rarely, if ever, infected. CNS neurons and glia are derived from neuroepithelial precursors in the subventricular zone (SVZ). In development, undifferentiated, common "neural progenitor cells" (NPCs) give rise to cells that form neurons, astroglia, and oligodendroglia on a precise schedule of proliferation, migration, and differentiation regulated by complex intra- and extracellular signals. In the mature CNS, neurogenesis is largely limited to specific regions (dentate gyrus and SVZ of lateral ventricles), while gliogenesis also occurs in the parenchyma. During the 1st funding period, we showed that HIV-1 and HIV proteins diminished NPC ability to differentiate and populate the striatum, in mice exposed both perinatally and as adults, and in vitro. In general, HIV R5 (culture) and HIV-1 Tat (in vivo stereology;culture) reduced Sox2+ NPCs and slowed proliferation. HIV-1 Tat in vivo also seemed to redirect cell fate as mature cell populations were changed ( oligodendroglia, astroglia) while total cell numbers and volume were normal. Co-exposure to morphine exacerbated some outcomes. Thus, both HIV and Tat interfere with NPC development via mechanisms that opiates can amplify. Data demonstrate that R5 or chronic Tat exposure distort normal NPC microglia interactions, resulting in abnormal CNS populations. Imbalances ( inflammatory astroglia, myelinating OLs) likely contribute to HIV-related deficits in CNS function. We hypothesize that HIV by itself, and more potently with morphine, overactivate microglia, causing aberrant signaling to NPCs through NADPH oxidase (NOX2) and iNOS/nitric oxide. The inappropriate signaling misdirects NPC lineage/differentiation, ultimately altering CNS cell populations. This theory is explored in vivo (mouse/HIV-1 Tat model) and in human brain cultures (HIV infective model) in 2 related aims.
Aim 1 tests if microglia play a central rol in the aberrant proliferation/lineage of NPCs after exposure to HIV-1 Tat opiates. Studies use a macrophage/ microglia deficient transgenic model (HIV-1 Tat x CSF1op/op mice), with chronic Tat induction at both adolescent (high risk for HIV and opiate exposure through exploratory behaviors) and adult stages. Hippocampus and striatum are studied;motor and cognitive behaviors correlated to population changes. NPCs are also examined in HIV+/HIV- autopsy tissue.
Aim 2 tests the roles of microglial NOX2 and iNOS signaling as causal in dysregulated NPC dynamics, using 3-dimensional aggregate cultures from human brain and real-time tracking of individual human NPCsHIVopiatesspecific inhibitors of iNOS, NOX2 and R5 binding. Amnis flow-single cell imaging used to identify infected cells.

Public Health Relevance

HIV infection and injection drug use are interlinked epidemics with devastating public health consequences;opioid abuse enhances CNS deficits related to HIV-1 infection. Our previous work suggested that CNS progenitors are dysregulated by exposure to combined morphine-HIV, leading to imbalances of neuron and glial populations that likely affect CNS function. Proposed studies use both HIV protein and infective HIV-human cell models of the disease to determine if chronic opiate-HIV exposure permanently alters cell populations in maturing/adult brains, and the causal role of inflammation/microglia.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
NeuroAIDS and other End-Organ Diseases Study Section (NAED)
Program Officer
Sorensen, Roger
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Virginia Commonwealth University
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Fitting, Sylvia; Stevens, David L; Khan, Fayez A et al. (2016) Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV-1 Tat Transgenic Mice. J Pharmacol Exp Ther 356:96-105
Marks, William D; Paris, Jason J; Schier, Christina J et al. (2016) HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations. J Neurovirol 22:747-762
Zou, Shiping; Fuss, Babette; Fitting, Sylvia et al. (2015) Oligodendrocytes Are Targets of HIV-1 Tat: NMDA and AMPA Receptor-Mediated Effects on Survival and Development. J Neurosci 35:11384-98
Hahn, Yun Kyung; Podhaizer, Elizabeth M; Farris, Sean P et al. (2015) Effects of chronic HIV-1 Tat exposure in the CNS: heightened vulnerability of males versus females to changes in cell numbers, synaptic integrity, and behavior. Brain Struct Funct 220:605-23
Hahn, Yun Kyung; Masvekar, Ruturaj R; Xu, Ruqiang et al. (2015) Chronic HIV-1 Tat and HIV reduce Rbfox3/NeuN: evidence for sex-related effects. Curr HIV Res 13:10-20
Hauser, Kurt F; Knapp, Pamela E (2014) Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors. Int Rev Neurobiol 118:231-313
Dever, Seth M; Costin, Blair N; Xu, Ruqiang et al. (2014) Differential expression of the alternatively spliced OPRM1 isoform μ-opioid receptor-1K in HIV-infected individuals. AIDS 28:19-30
Hahn, Yun Kyung; Podhaizer, Elizabeth M; Hauser, Kurt F et al. (2012) HIV-1 alters neural and glial progenitor cell dynamics in the central nervous system: coordinated response to opiates during maturation. Glia 60:1871-87
Dever, Seth M; Xu, Ruqiang; Fitting, Sylvia et al. (2012) Differential expression and HIV-1 regulation of μ-opioid receptor splice variants across human central nervous system cell types. J Neurovirol 18:181-90
Hauser, Kurt F; Fitting, Sylvia; Dever, Seth M et al. (2012) Opiate drug use and the pathophysiology of neuroAIDS. Curr HIV Res 10:435-52

Showing the most recent 10 out of 12 publications