Advancing our understanding of neuroplasticity and the development of novel therapeutics based upon this knowledge is critical in order to improve the treatment and prevention of nervous system disorders. Recent molecular, cellular, and behavioral findings have revealed the importance of epigenetic mechanisms that alter chromatin structure in maintaining stable patterns of gene expression and altering neuroplasticity associated with mood and memory formation. However, the dynamic and combinatorial nature of these signaling events has meant that the state of our understanding and ability to manipulate the underlying molecular mechanisms in the nervous system remains limited. To overcome these limitations, the long-term goals of the studies outlined in this proposal are to systematically develop selective, brain-penetrant, small-molecule probes (SMPs) of chromatin-remodeling complexes that affect neural activity-regulated gene transcription. Our overall hypothesis is that by selectively targeting the enzymatic activity of specific members of the histone deacetylase (HDAC) and histone acetyltransferase (HAT) families that it will be possible manipulate the acetylation state of histones in the promoters of certain immediate early genes (IEGs) thereby affecting neural- activity-regulated gene transcription and neuroplasticity. To develop the methods and SMPs necessary to rigorously test this hypothesis the proposed studies will address the following aims.
In Aim I, the structure- activity-relationships of two types of SMPs that enhance cAMP response element (CRE)-mediated transcription through affecting the activity of certain HDAC and HAT isoforms will be determined. As a sub-aim, proteomic profiling using affinity probes will be used to determine the components of the chromatin-remodeling complexes targeted by both types of SMPs.
In Aim II, a real time, automated microscopy-based imaging assay of cultured neurons from bacterial artificial chromosome (BAC)-transgenic mice expressing a genetically encoded fluorescent reporter of IEG expression, will be developed. As a sub-aim, this assay will be used in combination with immunofluorescent detection of histone-modifications to characterize the effect of manipulating HDAC/HAT-complex activities on IEG expression using SMPs and RNAi-mediated gene silencing.
In Aim III, the effect of specific HDAC inhibitors and HAT activators in mouse behavioral tests of hippocampal-dependent memory and depression-like behavior will be determined along with measurements of corresponding changes in brain gene expression patterns and histone acetylation. Significance: We anticipate these multidisciplinary studies will shed new light on molecular mechanisms of neuroplasticity and the relevance of these mechanisms to the development of novel therapeutics for memory and mood disorders.

Public Health Relevance

Advancing our understanding of brain plasticity and the development of novel therapeutics based upon this knowledge is critical in order to improve the treatment and prevention of a myriad of central nervous system disorders. This work will characterize the role that gene expression plains in mediating aspects of brain plasticity relevant to mood and memory disorders using small molecules as probes in biochemical and mouse behavioral studies. These multidisciplinary studies will shed new light on molecular mechanisms of brain plasticity and the relevance of these mechanisms to the development of novel therapeutics for their treatment of memory and mood disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA028301-03
Application #
8121651
Study Section
Special Emphasis Panel (ZRG1-ETTN-G (52))
Program Officer
Satterlee, John S
Project Start
2009-09-01
Project End
2014-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
3
Fiscal Year
2011
Total Cost
$597,271
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
She, Angela; Kurtser, Iren; Reis, Surya A et al. (2017) Selectivity and Kinetic Requirements of HDAC Inhibitors as Progranulin Enhancers for Treating Frontotemporal Dementia. Cell Chem Biol 24:892-906.e5
Ricq, Emily L; Hooker, Jacob M; Haggarty, Stephen J (2016) Toward development of epigenetic drugs for central nervous system disorders: Modulating neuroplasticity via H3K4 methylation. Psychiatry Clin Neurosci 70:536-550
Ghosh, Balaram; Zhao, Wen-Ning; Reis, Surya A et al. (2016) Dissecting structure-activity-relationships of crebinostat: Brain penetrant HDAC inhibitors for neuroepigenetic regulation. Bioorg Med Chem Lett 26:1265-1271
Wagner, Florence F; Weïwer, Michel; Steinbacher, Stefan et al. (2016) Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorg Med Chem 24:4008-4015
Reis, Surya A; Ghosh, Balaram; Hendricks, J Adam et al. (2016) Light-controlled modulation of gene expression by chemical optoepigenetic probes. Nat Chem Biol 12:317-23
Wagner, F F; Zhang, Y-L; Fass, D M et al. (2015) Kinetically Selective Inhibitors of Histone Deacetylase 2 (HDAC2) as Cognition Enhancers. Chem Sci 6:804-815
Iaconelli, Jonathan; Huang, Joanne H; Berkovitch, Shaunna S et al. (2015) HDAC6 inhibitors modulate Lys49 acetylation and membrane localization of ?-catenin in human iPSC-derived neuronal cells. ACS Chem Biol 10:883-90
Wang, Changning; Schroeder, Frederick A; Wey, Hsiao-Ying et al. (2014) In vivo imaging of histone deacetylases (HDACs) in the central nervous system and major peripheral organs. J Med Chem 57:7999-8009
Haggarty, Stephen J; Perlis, Roy H (2014) Translation: screening for novel therapeutics with disease-relevant cell types derived from human stem cell models. Biol Psychiatry 75:952-60
Wawer, Mathias J; Jaramillo, David E; Dan?ík, Vlado et al. (2014) Automated Structure-Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles. J Biomol Screen 19:738-48

Showing the most recent 10 out of 32 publications