Adolescence is a developmental stage in humans that is characterized by dramatic changes in an individual's biology and their behavior. It is also a period during which individuals may begin using psychostimulant drugs, whether for therapeutic or recreational purposes. Repeated exposure to these drugs is associated with deficits in memory, decision making, impulse control, and reward processing, and these adverse consequences on cognition may persist through extended periods of drug abstinence. Thus, it is critically important to understand the neurobiological processes that mediate drug-induced changes in behavior and to determine how adolescents, compared to adults, are particularly vulnerable. Our long-term goal in these studies is to understand the neuroadaptations induced by amphetamine in corticolimbic regions of the adolescent brain and determine how these changes can be prevented or reversed. In the proposed studies, we will use behavioral, pharmacological, and electrophysiological techniques in animal models of adolescence and adulthood to address two aims.
In Aim 1, we will determine if changes in dopamine and NMDA receptor function in the mPFC are responsible for the enduring deficits in cognitive behavior induced by amphetamine exposure during adolescence.
In Aim 2, we will determine the basis of the long-lasting functional changes in mPFC neurons that are observed in adolescent- compared to adult-exposed individuals. Our working hypotheses are that, 1) adolescent-exposed rats, when tested as adults, will be more sensitive to drug-induced deficits in cognitive function and to selective manipulations of dopamine and NMDA receptors, compared to those exposed as adults;2) the effects of repeated amphetamine treatment on the intrinsic firing properties, NMDA-dependent long term potentiation, and dopamine receptor-mediated responses of mPFC neurons are enhanced in adolescent- compared to adult-exposed individuals;and 3) the effects of this exposure on the in vivo responses of mPFC neurons to amphetamine and dopamine or NMDA receptor selective drugs will be greater in adolescent- compared to adult-exposed individuals. These hypotheses are consistent with our preliminary studies, which show that that exposure to amphetamine during adolescence impairs behavior on an mPFC-sensitive working memory task and alters the intrinsic firing properties of layer V pyramidal cells recorded in vitro. Through the research proposed in this application, we seek to fill the large gaps in our knowledge about what makes the brain and behavior of adolescence so uniquely different from adults and increases their vulnerability to the adverse consequences of repeated drug exposure. By understanding the unique plasticity of the adolescent brain, we will likely identify targets for preventative or therapeutic strategies aimed at ameliorating the adverse consequences of repeated amphetamine exposure during adolescence. In addition, we anticipate our results will move the field towards a clearer understanding of the unique effects of psychostimulants during this critical period of neural and behavioral development.

Public Health Relevance

The results of these experiments in animal models will help clarify the neurobiological underpinnings of the heightened vulnerability of adolescents to the detrimental consequences of amphetamine exposure. By understanding the unique neural and behavioral processes of adolescence, neuroscience we will be able to make significant advances in our attempts to more effectively prevent and treat the behavioral adaptations, including cognitive deficits, that result from drug exposure early in life.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Project (R01)
Project #
Application #
Study Section
Neurobiology of Motivated Behavior Study Section (NMB)
Program Officer
Lynch, Minda
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois Urbana-Champaign
Schools of Arts and Sciences
United States
Zip Code
Walker, Deena M; Bell, Margaret R; Flores, Cecilia et al. (2017) Adolescence and Reward: Making Sense of Neural and Behavioral Changes Amid the Chaos. J Neurosci 37:10855-10866
Hammerslag, Lindsey R; Belagodu, Amogh P; Aladesuyi Arogundade, Olubankole A et al. (2017) Adolescent impulsivity as a sex-dependent and subtype-dependent predictor of impulsivity, alcohol drinking and dopamine D2 receptor expression in adult rats. Addict Biol :
Paul, Kush; Kang, Shuo; Cox, Charles L et al. (2016) Repeated exposure to amphetamine during adolescence alters inhibitory tone in the medial prefrontal cortex following drug re-exposure in adulthood. Behav Brain Res 309:9-13
Kang, Shuo; Wu, Mariah M; Galvez, Roberto et al. (2016) Timing of amphetamine exposure in relation to puberty onset determines its effects on anhedonia, exploratory behavior, and dopamine D1 receptor expression in young adulthood. Neuroscience 339:72-84
Hammerslag, Lindsey R; Gulley, Joshua M (2016) Sex differences in behavior and neural development and their role in adolescent vulnerability to substance use. Behav Brain Res 298:15-26
Kang, S; Paul, K; Hankosky, E R et al. (2016) D1 receptor-mediated inhibition of medial prefrontal cortex neurons is disrupted in adult rats exposed to amphetamine in adolescence. Neuroscience 324:40-9
Hammerslag, Lindsey R; Gulley, Joshua M (2014) Age and sex differences in reward behavior in adolescent and adult rats. Dev Psychobiol 56:611-21
Hammerslag, Lindsey R; Waldman, Alex J; Gulley, Joshua M (2014) Effects of amphetamine exposure in adolescence or young adulthood on inhibitory control in adult male and female rats. Behav Brain Res 263:22-33
Gulley, J M; Juraska, J M (2013) The effects of abused drugs on adolescent development of corticolimbic circuitry and behavior. Neuroscience 249:3-20
Sherrill, Luke K; Stanis, Jessica J; Gulley, Joshua M (2013) Age-dependent effects of repeated amphetamine exposure on working memory in rats. Behav Brain Res 242:84-94

Showing the most recent 10 out of 13 publications