Cocaine (COC) is a highly addictive and a potent central nervous system stimulant, and abuse of this drug can result in significant long-term neurocognitive deficits in the human brain. Conventional pharmacotherapies for COC abuse have had limited clinical effectiveness. An alternative treatment approach that could become a powerful tool to help prevent cocaine abuse relapse, is vaccination against COC, which has shown promising results in both animal and human studies. Such vaccines can elicit high concentrations of antibodies (Abs) that bind cocaine, retain it in the circulation, and inhibit its entry into the brain. Ideally, when a vaccinated individual might use the drug, the characteristic increase in drug cravings (drug reinforcement) will be diminished or completely inhibited. The first human trial with cocaine conjugate vaccines demonstrated reduced cocaine use in subjects who had good Ab responses, but only a third of immunized subjects achieved adequate blocking levels of anti-cocaine Abs, and furthermore Ab levels declined rapidly after the vaccine booster doses ended. Susceptibility to cocaine abuse relapse is highest for several months after withdrawal from the drug, and so low initial responses in many subjects and a rapid decline of the Ab titers in good responders within weeks after completion of the booster schedule could substantially reduce the impact of this cocaine vaccine. Immune responses are ordinarily tightly regulated to permit a rise and fall of immunity with the decline mediated by regulatory T cell (Treg) suppression;so modulating Treg function using toll like receptor (TLR)-based small molecules and anti-costimulatory molecules can markedly enhance immune responses. This proposal seeks to address these critical vaccine problems by innovative immunological studies, which will include novel cocaine conjugate construction, nanocapsules vaccine formulations, accessory signal stimulation, blocking the induction of Treg responses, and modulation of B cell maturation signals in the germinal centers (GCs) to improve memory B-cell and long-lived plasma cell generation.
The specific aims are 1) To develop and formulate TLR5 ligand conjugates with cocaine for immunizations, to formulate these conjugates into nanocapsules with other TLR-based small molecule compounds, and to compare responses with standard carrier conjugate vaccines and alum adjuvant, 2) To improve COC-specific antibody responses by modulating B cell activation and germinal center responses, and 3) To enhance the immunogenicity and therapeutic potency of cocaine-TLR5 ligand conjugates and nanocapsules by manipulating Treg cell function.

Public Health Relevance

Cocaine abuse/dependence has profound social and economic effects in all parts of the world, and chronic use can lead to significant neuropsychological defects in individual addicts. An especially attractive alternative approach to help treat this addiction is vaccination against the drug, a treatment that could become a powerful tool in preventing relapse to abuse of this substance by blocking its pharmacological effects. This research will focus on novel conjugate vaccine constructs, nanocapsules vaccine formulations, and new methods to enhance the magnitude and persistence of high concentration anti-cocaine antibody responses that can inhibit the entry of cocaine into the brain.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MDCN-C (56))
Program Officer
Chiang, Nora
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Methodist Hospital Research Institute
United States
Zip Code
Cui, Jun; Song, Yanxia; Li, Yinyin et al. (2014) USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell Res 24:400-16
Orson, Frank M; Wang, Rongfu; Brimijoin, Stephen et al. (2014) The future potential for cocaine vaccines. Expert Opin Biol Ther 14:1271-83
Kosten, Thomas; Domingo, Coreen; Orson, Frank et al. (2014) Vaccines against stimulants: cocaine and MA. Br J Clin Pharmacol 77:368-74
Ramakrishnan, Muthu; Kinsey, Berma M; Singh, Rana A et al. (2014) Hapten optimization for cocaine vaccine with improved cocaine recognition. Chem Biol Drug Des 84:354-63
Zhao, Wei; Li, Qingtian; Ayers, Stephen et al. (2013) Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination. Cell 152:1037-50
Brimijoin, Stephen; Orson, Frank; Kosten, Thomas R et al. (2013) Anti-cocaine antibody and butyrylcholinesterase-derived cocaine hydrolase exert cooperative effects on cocaine pharmacokinetics and cocaine-induced locomotor activity in mice. Chem Biol Interact 203:212-6
Ajibade, Adebusola A; Wang, Helen Y; Wang, Rong-Fu (2013) Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol 34:307-16
Orson, Frank M; Rossen, Roger D; Shen, Xiaoyun et al. (2013) Spontaneous development of IgM anti-cocaine antibodies in habitual cocaine users: effect on IgG antibody responses to a cocaine cholera toxin B conjugate vaccine. Am J Addict 22:169-74
Tong, Yanzheng; Cui, Jun; Li, Qingtian et al. (2012) Enhanced TLR-induced NF-ýýB signaling and type I interferon responses in NLRC5 deficient mice. Cell Res 22:822-35
Shen, X Y; Orson, F M; Kosten, T R (2012) Vaccines against drug abuse. Clin Pharmacol Ther 91:60-70